reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
========================
Building LLVM with CMake
========================

.. contents::
   :local:

Introduction
============

`CMake <http://www.cmake.org/>`_ is a cross-platform build-generator tool. CMake
does not build the project, it generates the files needed by your build tool
(GNU make, Visual Studio, etc.) for building LLVM.

If **you are a new contributor**, please start with the :doc:`GettingStarted`
page.  This page is geared for existing contributors moving from the
legacy configure/make system.

If you are really anxious about getting a functional LLVM build, go to the
`Quick start`_ section. If you are a CMake novice, start with `Basic CMake usage`_
and then go back to the `Quick start`_ section once you know what you are doing. The
`Options and variables`_ section is a reference for customizing your build. If
you already have experience with CMake, this is the recommended starting point.

This page is geared towards users of the LLVM CMake build. If you're looking for
information about modifying the LLVM CMake build system you may want to see the
:doc:`CMakePrimer` page. It has a basic overview of the CMake language.

.. _Quick start:

Quick start
===========

We use here the command-line, non-interactive CMake interface.

#. `Download <http://www.cmake.org/cmake/resources/software.html>`_ and install
   CMake. Version 3.4.3 is the minimum required.

#. Open a shell. Your development tools must be reachable from this shell
   through the PATH environment variable.

#. Create a build directory. Building LLVM in the source
   directory is not supported. cd to this directory:

   .. code-block:: console

     $ mkdir mybuilddir
     $ cd mybuilddir

#. Execute this command in the shell replacing `path/to/llvm/source/root` with
   the path to the root of your LLVM source tree:

   .. code-block:: console

     $ cmake path/to/llvm/source/root

   CMake will detect your development environment, perform a series of tests, and
   generate the files required for building LLVM. CMake will use default values
   for all build parameters. See the `Options and variables`_ section for
   a list of build parameters that you can modify.

   This can fail if CMake can't detect your toolset, or if it thinks that the
   environment is not sane enough. In this case, make sure that the toolset that
   you intend to use is the only one reachable from the shell, and that the shell
   itself is the correct one for your development environment. CMake will refuse
   to build MinGW makefiles if you have a POSIX shell reachable through the PATH
   environment variable, for instance. You can force CMake to use a given build
   tool; for instructions, see the `Usage`_ section, below.

#. After CMake has finished running, proceed to use IDE project files, or start
   the build from the build directory:

   .. code-block:: console

     $ cmake --build .

   The ``--build`` option tells ``cmake`` to invoke the underlying build
   tool (``make``, ``ninja``, ``xcodebuild``, ``msbuild``, etc.)

   The underlying build tool can be invoked directly, of course, but
   the ``--build`` option is portable.

#. After LLVM has finished building, install it from the build directory:

   .. code-block:: console

     $ cmake --build . --target install

   The ``--target`` option with ``install`` parameter in addition to
   the ``--build`` option tells ``cmake`` to build the ``install`` target.

   It is possible to set a different install prefix at installation time
   by invoking the ``cmake_install.cmake`` script generated in the
   build directory:

   .. code-block:: console

     $ cmake -DCMAKE_INSTALL_PREFIX=/tmp/llvm -P cmake_install.cmake

.. _Basic CMake usage:
.. _Usage:

Basic CMake usage
=================

This section explains basic aspects of CMake
which you may need in your day-to-day usage.

CMake comes with extensive documentation, in the form of html files, and as
online help accessible via the ``cmake`` executable itself. Execute ``cmake
--help`` for further help options.

CMake allows you to specify a build tool (e.g., GNU make, Visual Studio,
or Xcode). If not specified on the command line, CMake tries to guess which
build tool to use, based on your environment. Once it has identified your
build tool, CMake uses the corresponding *Generator* to create files for your
build tool (e.g., Makefiles or Visual Studio or Xcode project files). You can
explicitly specify the generator with the command line option ``-G "Name of the
generator"``. To see a list of the available generators on your system, execute

.. code-block:: console

  $ cmake --help

This will list the generator names at the end of the help text.

Generators' names are case-sensitive, and may contain spaces. For this reason,
you should enter them exactly as they are listed in the ``cmake --help``
output, in quotes. For example, to generate project files specifically for
Visual Studio 12, you can execute:

.. code-block:: console

  $ cmake -G "Visual Studio 12" path/to/llvm/source/root

For a given development platform there can be more than one adequate
generator. If you use Visual Studio, "NMake Makefiles" is a generator you can use
for building with NMake. By default, CMake chooses the most specific generator
supported by your development environment. If you want an alternative generator,
you must tell this to CMake with the ``-G`` option.

.. todo::

  Explain variables and cache. Move explanation here from #options section.

.. _Options and variables:

Options and variables
=====================

Variables customize how the build will be generated. Options are boolean
variables, with possible values ON/OFF. Options and variables are defined on the
CMake command line like this:

.. code-block:: console

  $ cmake -DVARIABLE=value path/to/llvm/source

You can set a variable after the initial CMake invocation to change its
value. You can also undefine a variable:

.. code-block:: console

  $ cmake -UVARIABLE path/to/llvm/source

Variables are stored in the CMake cache. This is a file named ``CMakeCache.txt``
stored at the root of your build directory that is generated by ``cmake``.
Editing it yourself is not recommended.

Variables are listed in the CMake cache and later in this document with
the variable name and type separated by a colon. You can also specify the
variable and type on the CMake command line:

.. code-block:: console

  $ cmake -DVARIABLE:TYPE=value path/to/llvm/source

Frequently-used CMake variables
-------------------------------

Here are some of the CMake variables that are used often, along with a
brief explanation and LLVM-specific notes. For full documentation, consult the
CMake manual, or execute ``cmake --help-variable VARIABLE_NAME``.

**CMAKE_BUILD_TYPE**:STRING
  Sets the build type for ``make``-based generators. Possible values are
  Release, Debug, RelWithDebInfo and MinSizeRel. If you are using an IDE such as
  Visual Studio, you should use the IDE settings to set the build type.
  Be aware that Release and RelWithDebInfo use different optimization levels on
  most platforms.

**CMAKE_INSTALL_PREFIX**:PATH
  Path where LLVM will be installed if "make install" is invoked or the
  "install" target is built.

**LLVM_LIBDIR_SUFFIX**:STRING
  Extra suffix to append to the directory where libraries are to be
  installed. On a 64-bit architecture, one could use ``-DLLVM_LIBDIR_SUFFIX=64``
  to install libraries to ``/usr/lib64``.

**CMAKE_C_FLAGS**:STRING
  Extra flags to use when compiling C source files.

**CMAKE_CXX_FLAGS**:STRING
  Extra flags to use when compiling C++ source files.

Rarely-used CMake variables
---------------------------

Here are some of the CMake variables that are rarely used, along with a brief
explanation and LLVM-specific notes.  For full documentation, consult the CMake
manual, or execute ``cmake --help-variable VARIABLE_NAME``.

**CMAKE_CXX_STANDARD**:STRING
  Sets the C++ standard to conform to when building LLVM.  Possible values are
  14, 17, 20.  LLVM Requires C++ 14 or higher.  This defaults to 14.

.. _LLVM-specific variables:

LLVM-specific variables
-----------------------

**LLVM_TARGETS_TO_BUILD**:STRING
  Semicolon-separated list of targets to build, or *all* for building all
  targets. Case-sensitive. Defaults to *all*. Example:
  ``-DLLVM_TARGETS_TO_BUILD="X86;PowerPC"``.

**LLVM_BUILD_TOOLS**:BOOL
  Build LLVM tools. Defaults to ON. Targets for building each tool are generated
  in any case. You can build a tool separately by invoking its target. For
  example, you can build *llvm-as* with a Makefile-based system by executing *make
  llvm-as* at the root of your build directory.

**LLVM_INCLUDE_TOOLS**:BOOL
  Generate build targets for the LLVM tools. Defaults to ON. You can use this
  option to disable the generation of build targets for the LLVM tools.

**LLVM_INSTALL_BINUTILS_SYMLINKS**:BOOL
  Install symlinks from the binutils tool names to the corresponding LLVM tools.
  For example, ar will be symlinked to llvm-ar.

**LLVM_INSTALL_CCTOOLS_SYMLINKS**:BOOL
  Install symliks from the cctools tool names to the corresponding LLVM tools.
  For example, lipo will be symlinked to llvm-lipo.

**LLVM_BUILD_EXAMPLES**:BOOL
  Build LLVM examples. Defaults to OFF. Targets for building each example are
  generated in any case. See documentation for *LLVM_BUILD_TOOLS* above for more
  details.

**LLVM_INCLUDE_EXAMPLES**:BOOL
  Generate build targets for the LLVM examples. Defaults to ON. You can use this
  option to disable the generation of build targets for the LLVM examples.

**LLVM_BUILD_TESTS**:BOOL
  Build LLVM unit tests. Defaults to OFF. Targets for building each unit test
  are generated in any case. You can build a specific unit test using the
  targets defined under *unittests*, such as ADTTests, IRTests, SupportTests,
  etc. (Search for ``add_llvm_unittest`` in the subdirectories of *unittests*
  for a complete list of unit tests.) It is possible to build all unit tests
  with the target *UnitTests*.

**LLVM_INCLUDE_TESTS**:BOOL
  Generate build targets for the LLVM unit tests. Defaults to ON. You can use
  this option to disable the generation of build targets for the LLVM unit
  tests.

**LLVM_BUILD_BENCHMARKS**:BOOL
  Adds benchmarks to the list of default targets. Defaults to OFF.

**LLVM_INCLUDE_BENCHMARKS**:BOOL
  Generate build targets for the LLVM benchmarks. Defaults to ON.

**LLVM_APPEND_VC_REV**:BOOL
  Embed version control revision info (svn revision number or Git revision id).
  The version info is provided by the ``LLVM_REVISION`` macro in
  ``llvm/include/llvm/Support/VCSRevision.h``. Developers using git who don't
  need revision info can disable this option to avoid re-linking most binaries
  after a branch switch. Defaults to ON.

**LLVM_ENABLE_THREADS**:BOOL
  Build with threads support, if available. Defaults to ON.

**LLVM_ENABLE_UNWIND_TABLES**:BOOL
  Enable unwind tables in the binary.  Disabling unwind tables can reduce the
  size of the libraries.  Defaults to ON.

**LLVM_ENABLE_ASSERTIONS**:BOOL
  Enables code assertions. Defaults to ON if and only if ``CMAKE_BUILD_TYPE``
  is *Debug*.

**LLVM_ENABLE_EH**:BOOL
  Build LLVM with exception-handling support. This is necessary if you wish to
  link against LLVM libraries and make use of C++ exceptions in your own code
  that need to propagate through LLVM code. Defaults to OFF.

**LLVM_ENABLE_EXPENSIVE_CHECKS**:BOOL
  Enable additional time/memory expensive checking. Defaults to OFF.

**LLVM_ENABLE_IDE**:BOOL
  Tell the build system that an IDE is being used. This in turn disables the
  creation of certain convenience build system targets, such as the various
  ``install-*`` and ``check-*`` targets, since IDEs don't always deal well with
  a large number of targets. This is usually autodetected, but it can be
  configured manually to explicitly control the generation of those targets. One
  scenario where a manual override may be desirable is when using Visual Studio
  2017's CMake integration, which would not be detected as an IDE otherwise.

**LLVM_ENABLE_PIC**:BOOL
  Add the ``-fPIC`` flag to the compiler command-line, if the compiler supports
  this flag. Some systems, like Windows, do not need this flag. Defaults to ON.

**LLVM_ENABLE_RTTI**:BOOL
  Build LLVM with run-time type information. Defaults to OFF.

**LLVM_ENABLE_WARNINGS**:BOOL
  Enable all compiler warnings. Defaults to ON.

**LLVM_ENABLE_PEDANTIC**:BOOL
  Enable pedantic mode. This disables compiler-specific extensions, if
  possible. Defaults to ON.

**LLVM_ENABLE_WERROR**:BOOL
  Stop and fail the build, if a compiler warning is triggered. Defaults to OFF.

**LLVM_ABI_BREAKING_CHECKS**:STRING
  Used to decide if LLVM should be built with ABI breaking checks or
  not.  Allowed values are `WITH_ASSERTS` (default), `FORCE_ON` and
  `FORCE_OFF`.  `WITH_ASSERTS` turns on ABI breaking checks in an
  assertion enabled build.  `FORCE_ON` (`FORCE_OFF`) turns them on
  (off) irrespective of whether normal (`NDEBUG`-based) assertions are
  enabled or not.  A version of LLVM built with ABI breaking checks
  is not ABI compatible with a version built without it.

**LLVM_BUILD_32_BITS**:BOOL
  Build 32-bit executables and libraries on 64-bit systems. This option is
  available only on some 64-bit Unix systems. Defaults to OFF.

**LLVM_TARGET_ARCH**:STRING
  LLVM target to use for native code generation. This is required for JIT
  generation. It defaults to "host", meaning that it shall pick the architecture
  of the machine where LLVM is being built. If you are cross-compiling, set it
  to the target architecture name.

**LLVM_TABLEGEN**:STRING
  Full path to a native TableGen executable (usually named ``llvm-tblgen``). This is
  intended for cross-compiling: if the user sets this variable, no native
  TableGen will be created.

**LLVM_LIT_ARGS**:STRING
  Arguments given to lit.  ``make check`` and ``make clang-test`` are affected.
  By default, ``'-sv --no-progress-bar'`` on Visual C++ and Xcode, ``'-sv'`` on
  others.

**LLVM_LIT_TOOLS_DIR**:PATH
  The path to GnuWin32 tools for tests. Valid on Windows host.  Defaults to
  the empty string, in which case lit will look for tools needed for tests
  (e.g. ``grep``, ``sort``, etc.) in your %PATH%. If GnuWin32 is not in your
  %PATH%, then you can set this variable to the GnuWin32 directory so that
  lit can find tools needed for tests in that directory.

**LLVM_ENABLE_FFI**:BOOL
  Indicates whether the LLVM Interpreter will be linked with the Foreign Function
  Interface library (libffi) in order to enable calling external functions.
  If the library or its headers are installed in a custom
  location, you can also set the variables FFI_INCLUDE_DIR and
  FFI_LIBRARY_DIR to the directories where ffi.h and libffi.so can be found,
  respectively. Defaults to OFF.

**LLVM_EXTERNAL_{CLANG,LLD,POLLY}_SOURCE_DIR**:PATH
  These variables specify the path to the source directory for the external
  LLVM projects Clang, lld, and Polly, respectively, relative to the top-level
  source directory.  If the in-tree subdirectory for an external project
  exists (e.g., llvm/tools/clang for Clang), then the corresponding variable
  will not be used.  If the variable for an external project does not point
  to a valid path, then that project will not be built.

**LLVM_ENABLE_PROJECTS**:STRING
  Semicolon-separated list of projects to build, or *all* for building all
  (clang, libcxx, libcxxabi, lldb, compiler-rt, lld, polly, etc) projects.
  This flag assumes that projects are checked out side-by-side and not nested,
  i.e. clang needs to be in parallel of llvm instead of nested in `llvm/tools`.
  This feature allows to have one build for only LLVM and another for clang+llvm
  using the same source checkout.
  The full list is:
  ``clang;clang-tools-extra;compiler-rt;debuginfo-tests;libc;libclc;libcxx;libcxxabi;libunwind;lld;lldb;llgo;openmp;parallel-libs;polly;pstl``

**LLVM_EXTERNAL_PROJECTS**:STRING
  Semicolon-separated list of additional external projects to build as part of
  llvm. For each project LLVM_EXTERNAL_<NAME>_SOURCE_DIR have to be specified
  with the path for the source code of the project. Example:
  ``-DLLVM_EXTERNAL_PROJECTS="Foo;Bar"
  -DLLVM_EXTERNAL_FOO_SOURCE_DIR=/src/foo
  -DLLVM_EXTERNAL_BAR_SOURCE_DIR=/src/bar``.

**LLVM_USE_OPROFILE**:BOOL
  Enable building OProfile JIT support. Defaults to OFF.

**LLVM_PROFDATA_FILE**:PATH
  Path to a profdata file to pass into clang's -fprofile-instr-use flag. This
  can only be specified if you're building with clang.

**LLVM_USE_INTEL_JITEVENTS**:BOOL
  Enable building support for Intel JIT Events API. Defaults to OFF.

**LLVM_ENABLE_LIBPFM**:BOOL
  Enable building with libpfm to support hardware counter measurements in LLVM
  tools.
  Defaults to ON.

**LLVM_USE_PERF**:BOOL
  Enable building support for Perf (linux profiling tool) JIT support. Defaults to OFF.

**LLVM_ENABLE_ZLIB**:BOOL
  Enable building with zlib to support compression/uncompression in LLVM tools.
  Defaults to ON.

**LLVM_ENABLE_DIA_SDK**:BOOL
  Enable building with MSVC DIA SDK for PDB debugging support. Available
  only with MSVC. Defaults to ON.

**LLVM_USE_SANITIZER**:STRING
  Define the sanitizer used to build LLVM binaries and tests. Possible values
  are ``Address``, ``Memory``, ``MemoryWithOrigins``, ``Undefined``, ``Thread``,
  and ``Address;Undefined``. Defaults to empty string.

**LLVM_ENABLE_LTO**:STRING
  Add ``-flto`` or ``-flto=`` flags to the compile and link command
  lines, enabling link-time optimization. Possible values are ``Off``,
  ``On``, ``Thin`` and ``Full``. Defaults to OFF.

**LLVM_USE_LINKER**:STRING
  Add ``-fuse-ld={name}`` to the link invocation. The possible value depend on
  your compiler, for clang the value can be an absolute path to your custom
  linker, otherwise clang will prefix the name with ``ld.`` and apply its usual
  search. For example to link LLVM with the Gold linker, cmake can be invoked
  with ``-DLLVM_USE_LINKER=gold``.

**LLVM_ENABLE_LIBCXX**:BOOL
  If the host compiler and linker supports the stdlib flag, -stdlib=libc++ is
  passed to invocations of both so that the project is built using libc++
  instead of stdlibc++. Defaults to OFF.

**LLVM_STATIC_LINK_CXX_STDLIB**:BOOL
  Statically link to the C++ standard library if possible. This uses the flag
  "-static-libstdc++", but a Clang host compiler will statically link to libc++
  if used in conjuction with the **LLVM_ENABLE_LIBCXX** flag. Defaults to OFF.

**LLVM_ENABLE_LLD**:BOOL
  This option is equivalent to `-DLLVM_USE_LINKER=lld`, except during a 2-stage
  build where a dependency is added from the first stage to the second ensuring
  that lld is built before stage2 begins.

**LLVM_PARALLEL_COMPILE_JOBS**:STRING
  Define the maximum number of concurrent compilation jobs.

**LLVM_PARALLEL_LINK_JOBS**:STRING
  Define the maximum number of concurrent link jobs.

**LLVM_BUILD_DOCS**:BOOL
  Adds all *enabled* documentation targets (i.e. Doxgyen and Sphinx targets) as
  dependencies of the default build targets.  This results in all of the (enabled)
  documentation targets being as part of a normal build.  If the ``install``
  target is run then this also enables all built documentation targets to be
  installed. Defaults to OFF.  To enable a particular documentation target, see
  see LLVM_ENABLE_SPHINX and LLVM_ENABLE_DOXYGEN.

**LLVM_ENABLE_DOXYGEN**:BOOL
  Enables the generation of browsable HTML documentation using doxygen.
  Defaults to OFF.

**LLVM_ENABLE_DOXYGEN_QT_HELP**:BOOL
  Enables the generation of a Qt Compressed Help file. Defaults to OFF.
  This affects the make target ``doxygen-llvm``. When enabled, apart from
  the normal HTML output generated by doxygen, this will produce a QCH file
  named ``org.llvm.qch``. You can then load this file into Qt Creator.
  This option is only useful in combination with ``-DLLVM_ENABLE_DOXYGEN=ON``;
  otherwise this has no effect.

**LLVM_DOXYGEN_QCH_FILENAME**:STRING
  The filename of the Qt Compressed Help file that will be generated when
  ``-DLLVM_ENABLE_DOXYGEN=ON`` and
  ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON`` are given. Defaults to
  ``org.llvm.qch``.
  This option is only useful in combination with
  ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``;
  otherwise it has no effect.

**LLVM_DOXYGEN_QHP_NAMESPACE**:STRING
  Namespace under which the intermediate Qt Help Project file lives. See `Qt
  Help Project`_
  for more information. Defaults to "org.llvm". This option is only useful in
  combination with ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``; otherwise
  it has no effect.

**LLVM_DOXYGEN_QHP_CUST_FILTER_NAME**:STRING
  See `Qt Help Project`_ for
  more information. Defaults to the CMake variable ``${PACKAGE_STRING}`` which
  is a combination of the package name and version string. This filter can then
  be used in Qt Creator to select only documentation from LLVM when browsing
  through all the help files that you might have loaded. This option is only
  useful in combination with ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``;
  otherwise it has no effect.

.. _Qt Help Project: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-filters

**LLVM_DOXYGEN_QHELPGENERATOR_PATH**:STRING
  The path to the ``qhelpgenerator`` executable. Defaults to whatever CMake's
  ``find_program()`` can find. This option is only useful in combination with
  ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``; otherwise it has no
  effect.

**LLVM_DOXYGEN_SVG**:BOOL
  Uses .svg files instead of .png files for graphs in the Doxygen output.
  Defaults to OFF.

**LLVM_INSTALL_DOXYGEN_HTML_DIR**:STRING
  The path to install Doxygen-generated HTML documentation to. This path can
  either be absolute or relative to the CMAKE_INSTALL_PREFIX. Defaults to
  `share/doc/llvm/doxygen-html`.

**LLVM_ENABLE_SPHINX**:BOOL
  If specified, CMake will search for the ``sphinx-build`` executable and will make
  the ``SPHINX_OUTPUT_HTML`` and ``SPHINX_OUTPUT_MAN`` CMake options available.
  Defaults to OFF.

**SPHINX_EXECUTABLE**:STRING
  The path to the ``sphinx-build`` executable detected by CMake.
  For installation instructions, see
  http://www.sphinx-doc.org/en/latest/usage/installation.html

**SPHINX_OUTPUT_HTML**:BOOL
  If enabled (and ``LLVM_ENABLE_SPHINX`` is enabled) then the targets for
  building the documentation as html are added (but not built by default unless
  ``LLVM_BUILD_DOCS`` is enabled). There is a target for each project in the
  source tree that uses sphinx (e.g.  ``docs-llvm-html``, ``docs-clang-html``
  and ``docs-lld-html``). Defaults to ON.

**SPHINX_OUTPUT_MAN**:BOOL
  If enabled (and ``LLVM_ENABLE_SPHINX`` is enabled) the targets for building
  the man pages are added (but not built by default unless ``LLVM_BUILD_DOCS``
  is enabled). Currently the only target added is ``docs-llvm-man``. Defaults
  to ON.

**SPHINX_WARNINGS_AS_ERRORS**:BOOL
  If enabled then sphinx documentation warnings will be treated as
  errors. Defaults to ON.

**LLVM_INSTALL_SPHINX_HTML_DIR**:STRING
  The path to install Sphinx-generated HTML documentation to. This path can
  either be absolute or relative to the CMAKE_INSTALL_PREFIX. Defaults to
  `share/doc/llvm/html`.

**LLVM_INSTALL_OCAMLDOC_HTML_DIR**:STRING
  The path to install OCamldoc-generated HTML documentation to. This path can
  either be absolute or relative to the CMAKE_INSTALL_PREFIX. Defaults to
  `share/doc/llvm/ocaml-html`.

**LLVM_CREATE_XCODE_TOOLCHAIN**:BOOL
  macOS Only: If enabled CMake will generate a target named
  'install-xcode-toolchain'. This target will create a directory at
  $CMAKE_INSTALL_PREFIX/Toolchains containing an xctoolchain directory which can
  be used to override the default system tools.

**LLVM_BUILD_LLVM_DYLIB**:BOOL
  If enabled, the target for building the libLLVM shared library is added.
  This library contains all of LLVM's components in a single shared library.
  Defaults to OFF. This cannot be used in conjunction with BUILD_SHARED_LIBS.
  Tools will only be linked to the libLLVM shared library if LLVM_LINK_LLVM_DYLIB
  is also ON.
  The components in the library can be customised by setting LLVM_DYLIB_COMPONENTS
  to a list of the desired components.

**LLVM_LINK_LLVM_DYLIB**:BOOL
  If enabled, tools will be linked with the libLLVM shared library. Defaults
  to OFF. Setting LLVM_LINK_LLVM_DYLIB to ON also sets LLVM_BUILD_LLVM_DYLIB
  to ON.

**BUILD_SHARED_LIBS**:BOOL
  Flag indicating if each LLVM component (e.g. Support) is built as a shared
  library (ON) or as a static library (OFF). Its default value is OFF. On
  Windows, shared libraries may be used when building with MinGW, including
  mingw-w64, but not when building with the Microsoft toolchain.

  .. note:: BUILD_SHARED_LIBS is only recommended for use by LLVM developers.
            If you want to build LLVM as a shared library, you should use the
            ``LLVM_BUILD_LLVM_DYLIB`` option.

**LLVM_OPTIMIZED_TABLEGEN**:BOOL
  If enabled and building a debug or asserts build the CMake build system will
  generate a Release build tree to build a fully optimized tablegen for use
  during the build. Enabling this option can significantly speed up build times
  especially when building LLVM in Debug configurations.

**LLVM_REVERSE_ITERATION**:BOOL
  If enabled, all supported unordered llvm containers would be iterated in
  reverse order. This is useful for uncovering non-determinism caused by
  iteration of unordered containers.

**LLVM_BUILD_INSTRUMENTED_COVERAGE**:BOOL
  If enabled, `source-based code coverage
  <http://clang.llvm.org/docs/SourceBasedCodeCoverage.html>`_ instrumentation
  is enabled while building llvm.

**LLVM_CCACHE_BUILD**:BOOL
  If enabled and the ``ccache`` program is available, then LLVM will be
  built using ``ccache`` to speed up rebuilds of LLVM and its components.
  Defaults to OFF.  The size and location of the cache maintained
  by ``ccache`` can be adjusted via the LLVM_CCACHE_MAXSIZE and LLVM_CCACHE_DIR
  options, which are passed to the CCACHE_MAXSIZE and CCACHE_DIR environment
  variables, respectively.

**LLVM_FORCE_USE_OLD_TOOLCHAIN**:BOOL
  If enabled, the compiler and standard library versions won't be checked. LLVM
  may not compile at all, or might fail at runtime due to known bugs in these
  toolchains.

**LLVM_TEMPORARILY_ALLOW_OLD_TOOLCHAIN**:BOOL
  If enabled, the compiler version check will only warn when using a toolchain
  which is about to be deprecated, instead of emitting an error.

**LLVM_USE_NEWPM**:BOOL
  If enabled, use the experimental new pass manager.

**LLVM_ENABLE_BINDINGS**:BOOL
  If disabled, do not try to build the OCaml and go bindings.

**LLVM_ENABLE_Z3_SOLVER**:BOOL
  If enabled, the Z3 constraint solver is activated for the Clang static analyzer.
  A recent version of the z3 library needs to be available on the system.

CMake Caches
============

Recently LLVM and Clang have been adding some more complicated build system
features. Utilizing these new features often involves a complicated chain of
CMake variables passed on the command line. Clang provides a collection of CMake
cache scripts to make these features more approachable.

CMake cache files are utilized using CMake's -C flag:

.. code-block:: console

  $ cmake -C <path to cache file> <path to sources>

CMake cache scripts are processed in an isolated scope, only cached variables
remain set when the main configuration runs. CMake cached variables do not reset
variables that are already set unless the FORCE option is specified.

A few notes about CMake Caches:

- Order of command line arguments is important

  - -D arguments specified before -C are set before the cache is processed and
    can be read inside the cache file
  - -D arguments specified after -C are set after the cache is processed and
    are unset inside the cache file

- All -D arguments will override cache file settings
- CMAKE_TOOLCHAIN_FILE is evaluated after both the cache file and the command
  line arguments
- It is recommended that all -D options should be specified *before* -C

For more information about some of the advanced build configurations supported
via Cache files see :doc:`AdvancedBuilds`.

Executing the Tests
===================

Testing is performed when the *check-all* target is built. For instance, if you are
using Makefiles, execute this command in the root of your build directory:

.. code-block:: console

  $ make check-all

On Visual Studio, you may run tests by building the project "check-all".
For more information about testing, see the :doc:`TestingGuide`.

Cross compiling
===============

See `this wiki page <http://www.vtk.org/Wiki/CMake_Cross_Compiling>`_ for
generic instructions on how to cross-compile with CMake. It goes into detailed
explanations and may seem daunting, but it is not. On the wiki page there are
several examples including toolchain files. Go directly to `this section
<http://www.vtk.org/Wiki/CMake_Cross_Compiling#Information_how_to_set_up_various_cross_compiling_toolchains>`_
for a quick solution.

Also see the `LLVM-specific variables`_ section for variables used when
cross-compiling.

Embedding LLVM in your project
==============================

From LLVM 3.5 onwards the CMake build system exports LLVM libraries as
importable CMake targets. This means that clients of LLVM can now reliably use
CMake to develop their own LLVM-based projects against an installed version of
LLVM regardless of how it was built.

Here is a simple example of a CMakeLists.txt file that imports the LLVM libraries
and uses them to build a simple application ``simple-tool``.

.. code-block:: cmake

  cmake_minimum_required(VERSION 3.4.3)
  project(SimpleProject)

  find_package(LLVM REQUIRED CONFIG)

  message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")
  message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")

  # Set your project compile flags.
  # E.g. if using the C++ header files
  # you will need to enable C++11 support
  # for your compiler.

  include_directories(${LLVM_INCLUDE_DIRS})
  add_definitions(${LLVM_DEFINITIONS})

  # Now build our tools
  add_executable(simple-tool tool.cpp)

  # Find the libraries that correspond to the LLVM components
  # that we wish to use
  llvm_map_components_to_libnames(llvm_libs support core irreader)

  # Link against LLVM libraries
  target_link_libraries(simple-tool ${llvm_libs})

The ``find_package(...)`` directive when used in CONFIG mode (as in the above
example) will look for the ``LLVMConfig.cmake`` file in various locations (see
cmake manual for details).  It creates a ``LLVM_DIR`` cache entry to save the
directory where ``LLVMConfig.cmake`` is found or allows the user to specify the
directory (e.g. by passing ``-DLLVM_DIR=/usr/lib/cmake/llvm`` to
the ``cmake`` command or by setting it directly in ``ccmake`` or ``cmake-gui``).

This file is available in two different locations.

* ``<INSTALL_PREFIX>/lib/cmake/llvm/LLVMConfig.cmake`` where
  ``<INSTALL_PREFIX>`` is the install prefix of an installed version of LLVM.
  On Linux typically this is ``/usr/lib/cmake/llvm/LLVMConfig.cmake``.

* ``<LLVM_BUILD_ROOT>/lib/cmake/llvm/LLVMConfig.cmake`` where
  ``<LLVM_BUILD_ROOT>`` is the root of the LLVM build tree. **Note: this is only
  available when building LLVM with CMake.**

If LLVM is installed in your operating system's normal installation prefix (e.g.
on Linux this is usually ``/usr/``) ``find_package(LLVM ...)`` will
automatically find LLVM if it is installed correctly. If LLVM is not installed
or you wish to build directly against the LLVM build tree you can use
``LLVM_DIR`` as previously mentioned.

The ``LLVMConfig.cmake`` file sets various useful variables. Notable variables
include

``LLVM_CMAKE_DIR``
  The path to the LLVM CMake directory (i.e. the directory containing
  LLVMConfig.cmake).

``LLVM_DEFINITIONS``
  A list of preprocessor defines that should be used when building against LLVM.

``LLVM_ENABLE_ASSERTIONS``
  This is set to ON if LLVM was built with assertions, otherwise OFF.

``LLVM_ENABLE_EH``
  This is set to ON if LLVM was built with exception handling (EH) enabled,
  otherwise OFF.

``LLVM_ENABLE_RTTI``
  This is set to ON if LLVM was built with run time type information (RTTI),
  otherwise OFF.

``LLVM_INCLUDE_DIRS``
  A list of include paths to directories containing LLVM header files.

``LLVM_PACKAGE_VERSION``
  The LLVM version. This string can be used with CMake conditionals, e.g., ``if
  (${LLVM_PACKAGE_VERSION} VERSION_LESS "3.5")``.

``LLVM_TOOLS_BINARY_DIR``
  The path to the directory containing the LLVM tools (e.g. ``llvm-as``).

Notice that in the above example we link ``simple-tool`` against several LLVM
libraries. The list of libraries is determined by using the
``llvm_map_components_to_libnames()`` CMake function. For a list of available
components look at the output of running ``llvm-config --components``.

Note that for LLVM < 3.5 ``llvm_map_components_to_libraries()`` was
used instead of ``llvm_map_components_to_libnames()``. This is now deprecated
and will be removed in a future version of LLVM.

.. _cmake-out-of-source-pass:

Developing LLVM passes out of source
------------------------------------

It is possible to develop LLVM passes out of LLVM's source tree (i.e. against an
installed or built LLVM). An example of a project layout is provided below.

.. code-block:: none

  <project dir>/
      |
      CMakeLists.txt
      <pass name>/
          |
          CMakeLists.txt
          Pass.cpp
          ...

Contents of ``<project dir>/CMakeLists.txt``:

.. code-block:: cmake

  find_package(LLVM REQUIRED CONFIG)

  add_definitions(${LLVM_DEFINITIONS})
  include_directories(${LLVM_INCLUDE_DIRS})

  add_subdirectory(<pass name>)

Contents of ``<project dir>/<pass name>/CMakeLists.txt``:

.. code-block:: cmake

  add_library(LLVMPassname MODULE Pass.cpp)

Note if you intend for this pass to be merged into the LLVM source tree at some
point in the future it might make more sense to use LLVM's internal
``add_llvm_library`` function with the MODULE argument instead by...


Adding the following to ``<project dir>/CMakeLists.txt`` (after
``find_package(LLVM ...)``)

.. code-block:: cmake

  list(APPEND CMAKE_MODULE_PATH "${LLVM_CMAKE_DIR}")
  include(AddLLVM)

And then changing ``<project dir>/<pass name>/CMakeLists.txt`` to

.. code-block:: cmake

  add_llvm_library(LLVMPassname MODULE
    Pass.cpp
    )

When you are done developing your pass, you may wish to integrate it
into the LLVM source tree. You can achieve it in two easy steps:

#. Copying ``<pass name>`` folder into ``<LLVM root>/lib/Transform`` directory.

#. Adding ``add_subdirectory(<pass name>)`` line into
   ``<LLVM root>/lib/Transform/CMakeLists.txt``.

Compiler/Platform-specific topics
=================================

Notes for specific compilers and/or platforms.

Microsoft Visual C++
--------------------

**LLVM_COMPILER_JOBS**:STRING
  Specifies the maximum number of parallel compiler jobs to use per project
  when building with msbuild or Visual Studio. Only supported for the Visual
  Studio 2010 CMake generator. 0 means use all processors. Default is 0.