reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
..
    If Passes.html is up to date, the following "one-liner" should print
    an empty diff.

    egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
          -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
    perl >help <<'EOT' && diff -u help html; rm -f help html
    open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
    while (<HTML>) {
      m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
      $order{$1} = sprintf("%03d", 1 + int %order);
    }
    open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
    while (<HELP>) {
      m:^    -([^ ]+) +- (.*)$: or next;
      my $o = $order{$1};
      $o = "000" unless defined $o;
      push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
      push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
    }
    @x = map { s/^\d\d\d//; $_ } sort @x;
    @y = map { s/^\d\d\d//; $_ } sort @y;
    print @x, @y;
    EOT

    This (real) one-liner can also be helpful when converting comments to HTML:

    perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'

====================================
LLVM's Analysis and Transform Passes
====================================

.. contents::
    :local:

Introduction
============

This document serves as a high level summary of the optimization features that
LLVM provides.  Optimizations are implemented as Passes that traverse some
portion of a program to either collect information or transform the program.
The table below divides the passes that LLVM provides into three categories.
Analysis passes compute information that other passes can use or for debugging
or program visualization purposes.  Transform passes can use (or invalidate)
the analysis passes.  Transform passes all mutate the program in some way.
Utility passes provides some utility but don't otherwise fit categorization.
For example passes to extract functions to bitcode or write a module to bitcode
are neither analysis nor transform passes.  The table of contents above
provides a quick summary of each pass and links to the more complete pass
description later in the document.

Analysis Passes
===============

This section describes the LLVM Analysis Passes.

``-aa-eval``: Exhaustive Alias Analysis Precision Evaluator
-----------------------------------------------------------

This is a simple N^2 alias analysis accuracy evaluator.  Basically, for each
function in the program, it simply queries to see how the alias analysis
implementation answers alias queries between each pair of pointers in the
function.

This is inspired and adapted from code by: Naveen Neelakantam, Francesco
Spadini, and Wojciech Stryjewski.

``-basicaa``: Basic Alias Analysis (stateless AA impl)
------------------------------------------------------

A basic alias analysis pass that implements identities (two different globals
cannot alias, etc), but does no stateful analysis.

``-basiccg``: Basic CallGraph Construction
------------------------------------------

Yet to be written.

``-count-aa``: Count Alias Analysis Query Responses
---------------------------------------------------

A pass which can be used to count how many alias queries are being made and how
the alias analysis implementation being used responds.

.. _passes-da:

``-da``: Dependence Analysis
----------------------------

Dependence analysis framework, which is used to detect dependences in memory
accesses.

``-debug-aa``: AA use debugger
------------------------------

This simple pass checks alias analysis users to ensure that if they create a
new value, they do not query AA without informing it of the value.  It acts as
a shim over any other AA pass you want.

Yes keeping track of every value in the program is expensive, but this is a
debugging pass.

``-domfrontier``: Dominance Frontier Construction
-------------------------------------------------

This pass is a simple dominator construction algorithm for finding forward
dominator frontiers.

``-domtree``: Dominator Tree Construction
-----------------------------------------

This pass is a simple dominator construction algorithm for finding forward
dominators.


``-dot-callgraph``: Print Call Graph to "dot" file
--------------------------------------------------

This pass, only available in ``opt``, prints the call graph into a ``.dot``
graph.  This graph can then be processed with the "dot" tool to convert it to
postscript or some other suitable format.

``-dot-cfg``: Print CFG of function to "dot" file
-------------------------------------------------

This pass, only available in ``opt``, prints the control flow graph into a
``.dot`` graph.  This graph can then be processed with the :program:`dot` tool
to convert it to postscript or some other suitable format.

``-dot-cfg-only``: Print CFG of function to "dot" file (with no function bodies)
--------------------------------------------------------------------------------

This pass, only available in ``opt``, prints the control flow graph into a
``.dot`` graph, omitting the function bodies.  This graph can then be processed
with the :program:`dot` tool to convert it to postscript or some other suitable
format.

``-dot-dom``: Print dominance tree of function to "dot" file
------------------------------------------------------------

This pass, only available in ``opt``, prints the dominator tree into a ``.dot``
graph.  This graph can then be processed with the :program:`dot` tool to
convert it to postscript or some other suitable format.

``-dot-dom-only``: Print dominance tree of function to "dot" file (with no function bodies)
-------------------------------------------------------------------------------------------

This pass, only available in ``opt``, prints the dominator tree into a ``.dot``
graph, omitting the function bodies.  This graph can then be processed with the
:program:`dot` tool to convert it to postscript or some other suitable format.

``-dot-postdom``: Print postdominance tree of function to "dot" file
--------------------------------------------------------------------

This pass, only available in ``opt``, prints the post dominator tree into a
``.dot`` graph.  This graph can then be processed with the :program:`dot` tool
to convert it to postscript or some other suitable format.

``-dot-postdom-only``: Print postdominance tree of function to "dot" file (with no function bodies)
---------------------------------------------------------------------------------------------------

This pass, only available in ``opt``, prints the post dominator tree into a
``.dot`` graph, omitting the function bodies.  This graph can then be processed
with the :program:`dot` tool to convert it to postscript or some other suitable
format.

``-globalsmodref-aa``: Simple mod/ref analysis for globals
----------------------------------------------------------

This simple pass provides alias and mod/ref information for global values that
do not have their address taken, and keeps track of whether functions read or
write memory (are "pure").  For this simple (but very common) case, we can
provide pretty accurate and useful information.

``-instcount``: Counts the various types of ``Instruction``\ s
--------------------------------------------------------------

This pass collects the count of all instructions and reports them.

``-intervals``: Interval Partition Construction
-----------------------------------------------

This analysis calculates and represents the interval partition of a function,
or a preexisting interval partition.

In this way, the interval partition may be used to reduce a flow graph down to
its degenerate single node interval partition (unless it is irreducible).

``-iv-users``: Induction Variable Users
---------------------------------------

Bookkeeping for "interesting" users of expressions computed from induction
variables.

``-lazy-value-info``: Lazy Value Information Analysis
-----------------------------------------------------

Interface for lazy computation of value constraint information.

``-libcall-aa``: LibCall Alias Analysis
---------------------------------------

LibCall Alias Analysis.

``-lint``: Statically lint-checks LLVM IR
-----------------------------------------

This pass statically checks for common and easily-identified constructs which
produce undefined or likely unintended behavior in LLVM IR.

It is not a guarantee of correctness, in two ways.  First, it isn't
comprehensive.  There are checks which could be done statically which are not
yet implemented.  Some of these are indicated by TODO comments, but those
aren't comprehensive either.  Second, many conditions cannot be checked
statically.  This pass does no dynamic instrumentation, so it can't check for
all possible problems.

Another limitation is that it assumes all code will be executed.  A store
through a null pointer in a basic block which is never reached is harmless, but
this pass will warn about it anyway.

Optimization passes may make conditions that this pass checks for more or less
obvious.  If an optimization pass appears to be introducing a warning, it may
be that the optimization pass is merely exposing an existing condition in the
code.

This code may be run before :ref:`instcombine <passes-instcombine>`.  In many
cases, instcombine checks for the same kinds of things and turns instructions
with undefined behavior into unreachable (or equivalent).  Because of this,
this pass makes some effort to look through bitcasts and so on.

``-loops``: Natural Loop Information
------------------------------------

This analysis is used to identify natural loops and determine the loop depth of
various nodes of the CFG.  Note that the loops identified may actually be
several natural loops that share the same header node... not just a single
natural loop.

``-memdep``: Memory Dependence Analysis
---------------------------------------

An analysis that determines, for a given memory operation, what preceding
memory operations it depends on.  It builds on alias analysis information, and
tries to provide a lazy, caching interface to a common kind of alias
information query.

``-module-debuginfo``: Decodes module-level debug info
------------------------------------------------------

This pass decodes the debug info metadata in a module and prints in a
(sufficiently-prepared-) human-readable form.

For example, run this pass from ``opt`` along with the ``-analyze`` option, and
it'll print to standard output.

``-postdomfrontier``: Post-Dominance Frontier Construction
----------------------------------------------------------

This pass is a simple post-dominator construction algorithm for finding
post-dominator frontiers.

``-postdomtree``: Post-Dominator Tree Construction
--------------------------------------------------

This pass is a simple post-dominator construction algorithm for finding
post-dominators.

``-print-alias-sets``: Alias Set Printer
----------------------------------------

Yet to be written.

``-print-callgraph``: Print a call graph
----------------------------------------

This pass, only available in ``opt``, prints the call graph to standard error
in a human-readable form.

``-print-callgraph-sccs``: Print SCCs of the Call Graph
-------------------------------------------------------

This pass, only available in ``opt``, prints the SCCs of the call graph to
standard error in a human-readable form.

``-print-cfg-sccs``: Print SCCs of each function CFG
----------------------------------------------------

This pass, only available in ``opt``, printsthe SCCs of each function CFG to
standard error in a human-readable fom.

``-print-dom-info``: Dominator Info Printer
-------------------------------------------

Dominator Info Printer.

``-print-externalfnconstants``: Print external fn callsites passed constants
----------------------------------------------------------------------------

This pass, only available in ``opt``, prints out call sites to external
functions that are called with constant arguments.  This can be useful when
looking for standard library functions we should constant fold or handle in
alias analyses.

``-print-function``: Print function to stderr
---------------------------------------------

The ``PrintFunctionPass`` class is designed to be pipelined with other
``FunctionPasses``, and prints out the functions of the module as they are
processed.

``-print-module``: Print module to stderr
-----------------------------------------

This pass simply prints out the entire module when it is executed.

.. _passes-print-used-types:

``-print-used-types``: Find Used Types
--------------------------------------

This pass is used to seek out all of the types in use by the program.  Note
that this analysis explicitly does not include types only used by the symbol
table.

``-regions``: Detect single entry single exit regions
-----------------------------------------------------

The ``RegionInfo`` pass detects single entry single exit regions in a function,
where a region is defined as any subgraph that is connected to the remaining
graph at only two spots.  Furthermore, an hierarchical region tree is built.

``-scalar-evolution``: Scalar Evolution Analysis
------------------------------------------------

The ``ScalarEvolution`` analysis can be used to analyze and catagorize scalar
expressions in loops.  It specializes in recognizing general induction
variables, representing them with the abstract and opaque ``SCEV`` class.
Given this analysis, trip counts of loops and other important properties can be
obtained.

This analysis is primarily useful for induction variable substitution and
strength reduction.

``-scev-aa``: ScalarEvolution-based Alias Analysis
--------------------------------------------------

Simple alias analysis implemented in terms of ``ScalarEvolution`` queries.

This differs from traditional loop dependence analysis in that it tests for
dependencies within a single iteration of a loop, rather than dependencies
between different iterations.

``ScalarEvolution`` has a more complete understanding of pointer arithmetic
than ``BasicAliasAnalysis``' collection of ad-hoc analyses.

``-stack-safety``: Stack Safety Analysis
------------------------------------------------

The ``StackSafety`` analysis can be used to determine if stack allocated
variables can be considered safe from memory access bugs.

This analysis' primary purpose is to be used by sanitizers to avoid unnecessary
instrumentation of safe variables.

``-targetdata``: Target Data Layout
-----------------------------------

Provides other passes access to information on how the size and alignment
required by the target ABI for various data types.

Transform Passes
================

This section describes the LLVM Transform Passes.

``-adce``: Aggressive Dead Code Elimination
-------------------------------------------

ADCE aggressively tries to eliminate code.  This pass is similar to :ref:`DCE
<passes-dce>` but it assumes that values are dead until proven otherwise.  This
is similar to :ref:`SCCP <passes-sccp>`, except applied to the liveness of
values.

``-always-inline``: Inliner for ``always_inline`` functions
-----------------------------------------------------------

A custom inliner that handles only functions that are marked as "always
inline".

``-argpromotion``: Promote 'by reference' arguments to scalars
--------------------------------------------------------------

This pass promotes "by reference" arguments to be "by value" arguments.  In
practice, this means looking for internal functions that have pointer
arguments.  If it can prove, through the use of alias analysis, that an
argument is *only* loaded, then it can pass the value into the function instead
of the address of the value.  This can cause recursive simplification of code
and lead to the elimination of allocas (especially in C++ template code like
the STL).

This pass also handles aggregate arguments that are passed into a function,
scalarizing them if the elements of the aggregate are only loaded.  Note that
it refuses to scalarize aggregates which would require passing in more than
three operands to the function, because passing thousands of operands for a
large array or structure is unprofitable!

Note that this transformation could also be done for arguments that are only
stored to (returning the value instead), but does not currently.  This case
would be best handled when and if LLVM starts supporting multiple return values
from functions.

``-bb-vectorize``: Basic-Block Vectorization
--------------------------------------------

This pass combines instructions inside basic blocks to form vector
instructions.  It iterates over each basic block, attempting to pair compatible
instructions, repeating this process until no additional pairs are selected for
vectorization.  When the outputs of some pair of compatible instructions are
used as inputs by some other pair of compatible instructions, those pairs are
part of a potential vectorization chain.  Instruction pairs are only fused into
vector instructions when they are part of a chain longer than some threshold
length.  Moreover, the pass attempts to find the best possible chain for each
pair of compatible instructions.  These heuristics are intended to prevent
vectorization in cases where it would not yield a performance increase of the
resulting code.

``-block-placement``: Profile Guided Basic Block Placement
----------------------------------------------------------

This pass is a very simple profile guided basic block placement algorithm.  The
idea is to put frequently executed blocks together at the start of the function
and hopefully increase the number of fall-through conditional branches.  If
there is no profile information for a particular function, this pass basically
orders blocks in depth-first order.

``-break-crit-edges``: Break critical edges in CFG
--------------------------------------------------

Break all of the critical edges in the CFG by inserting a dummy basic block.
It may be "required" by passes that cannot deal with critical edges.  This
transformation obviously invalidates the CFG, but can update forward dominator
(set, immediate dominators, tree, and frontier) information.

``-codegenprepare``: Optimize for code generation
-------------------------------------------------

This pass munges the code in the input function to better prepare it for
SelectionDAG-based code generation.  This works around limitations in its
basic-block-at-a-time approach.  It should eventually be removed.

``-constmerge``: Merge Duplicate Global Constants
-------------------------------------------------

Merges duplicate global constants together into a single constant that is
shared.  This is useful because some passes (i.e., TraceValues) insert a lot of
string constants into the program, regardless of whether or not an existing
string is available.

``-constprop``: Simple constant propagation
-------------------------------------------

This pass implements constant propagation and merging.  It looks for
instructions involving only constant operands and replaces them with a constant
value instead of an instruction.  For example:

.. code-block:: llvm

  add i32 1, 2

becomes

.. code-block:: llvm

  i32 3

NOTE: this pass has a habit of making definitions be dead.  It is a good idea
to run a :ref:`Dead Instruction Elimination <passes-die>` pass sometime after
running this pass.

.. _passes-dce:

``-dce``: Dead Code Elimination
-------------------------------

Dead code elimination is similar to :ref:`dead instruction elimination
<passes-die>`, but it rechecks instructions that were used by removed
instructions to see if they are newly dead.

``-deadargelim``: Dead Argument Elimination
-------------------------------------------

This pass deletes dead arguments from internal functions.  Dead argument
elimination removes arguments which are directly dead, as well as arguments
only passed into function calls as dead arguments of other functions.  This
pass also deletes dead arguments in a similar way.

This pass is often useful as a cleanup pass to run after aggressive
interprocedural passes, which add possibly-dead arguments.

``-deadtypeelim``: Dead Type Elimination
----------------------------------------

This pass is used to cleanup the output of GCC.  It eliminate names for types
that are unused in the entire translation unit, using the :ref:`find used types
<passes-print-used-types>` pass.

.. _passes-die:

``-die``: Dead Instruction Elimination
--------------------------------------

Dead instruction elimination performs a single pass over the function, removing
instructions that are obviously dead.

``-dse``: Dead Store Elimination
--------------------------------

A trivial dead store elimination that only considers basic-block local
redundant stores.

.. _passes-functionattrs:

``-functionattrs``: Deduce function attributes
----------------------------------------------

A simple interprocedural pass which walks the call-graph, looking for functions
which do not access or only read non-local memory, and marking them
``readnone``/``readonly``.  In addition, it marks function arguments (of
pointer type) "``nocapture``" if a call to the function does not create any
copies of the pointer value that outlive the call.  This more or less means
that the pointer is only dereferenced, and not returned from the function or
stored in a global.  This pass is implemented as a bottom-up traversal of the
call-graph.

``-globaldce``: Dead Global Elimination
---------------------------------------

This transform is designed to eliminate unreachable internal globals from the
program.  It uses an aggressive algorithm, searching out globals that are known
to be alive.  After it finds all of the globals which are needed, it deletes
whatever is left over.  This allows it to delete recursive chunks of the
program which are unreachable.

``-globalopt``: Global Variable Optimizer
-----------------------------------------

This pass transforms simple global variables that never have their address
taken.  If obviously true, it marks read/write globals as constant, deletes
variables only stored to, etc.

``-gvn``: Global Value Numbering
--------------------------------

This pass performs global value numbering to eliminate fully and partially
redundant instructions.  It also performs redundant load elimination.

.. _passes-indvars:

``-indvars``: Canonicalize Induction Variables
----------------------------------------------

This transformation analyzes and transforms the induction variables (and
computations derived from them) into simpler forms suitable for subsequent
analysis and transformation.

This transformation makes the following changes to each loop with an
identifiable induction variable:

* All loops are transformed to have a *single* canonical induction variable
  which starts at zero and steps by one.
* The canonical induction variable is guaranteed to be the first PHI node in
  the loop header block.
* Any pointer arithmetic recurrences are raised to use array subscripts.

If the trip count of a loop is computable, this pass also makes the following
changes:

* The exit condition for the loop is canonicalized to compare the induction
  value against the exit value.  This turns loops like:

  .. code-block:: c++

    for (i = 7; i*i < 1000; ++i)

    into

  .. code-block:: c++

    for (i = 0; i != 25; ++i)

* Any use outside of the loop of an expression derived from the indvar is
  changed to compute the derived value outside of the loop, eliminating the
  dependence on the exit value of the induction variable.  If the only purpose
  of the loop is to compute the exit value of some derived expression, this
  transformation will make the loop dead.

This transformation should be followed by strength reduction after all of the
desired loop transformations have been performed.  Additionally, on targets
where it is profitable, the loop could be transformed to count down to zero
(the "do loop" optimization).

``-inline``: Function Integration/Inlining
------------------------------------------

Bottom-up inlining of functions into callees.

.. _passes-instcombine:

``-instcombine``: Combine redundant instructions
------------------------------------------------

Combine instructions to form fewer, simple instructions.  This pass does not
modify the CFG. This pass is where algebraic simplification happens.

This pass combines things like:

.. code-block:: llvm

  %Y = add i32 %X, 1
  %Z = add i32 %Y, 1

into:

.. code-block:: llvm

  %Z = add i32 %X, 2

This is a simple worklist driven algorithm.

This pass guarantees that the following canonicalizations are performed on the
program:

#. If a binary operator has a constant operand, it is moved to the right-hand
   side.
#. Bitwise operators with constant operands are always grouped so that shifts
   are performed first, then ``or``\ s, then ``and``\ s, then ``xor``\ s.
#. Compare instructions are converted from ``<``, ``>``, ``≤``, or ``≥`` to
   ``=`` or ``≠`` if possible.
#. All ``cmp`` instructions on boolean values are replaced with logical
   operations.
#. ``add X, X`` is represented as ``mul X, 2`` ⇒ ``shl X, 1``
#. Multiplies with a constant power-of-two argument are transformed into
   shifts.
#. … etc.

This pass can also simplify calls to specific well-known function calls (e.g.
runtime library functions).  For example, a call ``exit(3)`` that occurs within
the ``main()`` function can be transformed into simply ``return 3``. Whether or
not library calls are simplified is controlled by the
:ref:`-functionattrs <passes-functionattrs>` pass and LLVM's knowledge of
library calls on different targets.

.. _passes-aggressive-instcombine:

``-aggressive-instcombine``: Combine expression patterns
--------------------------------------------------------

Combine expression patterns to form expressions with fewer, simple instructions.
This pass does not modify the CFG.

For example, this pass reduce width of expressions post-dominated by TruncInst
into smaller width when applicable.

It differs from instcombine pass in that it contains pattern optimization that
requires higher complexity than the O(1), thus, it should run fewer times than
instcombine pass.

``-internalize``: Internalize Global Symbols
--------------------------------------------

This pass loops over all of the functions in the input module, looking for a
main function.  If a main function is found, all other functions and all global
variables with initializers are marked as internal.

``-ipconstprop``: Interprocedural constant propagation
------------------------------------------------------

This pass implements an *extremely* simple interprocedural constant propagation
pass.  It could certainly be improved in many different ways, like using a
worklist.  This pass makes arguments dead, but does not remove them.  The
existing dead argument elimination pass should be run after this to clean up
the mess.

``-ipsccp``: Interprocedural Sparse Conditional Constant Propagation
--------------------------------------------------------------------

An interprocedural variant of :ref:`Sparse Conditional Constant Propagation
<passes-sccp>`.

``-jump-threading``: Jump Threading
-----------------------------------

Jump threading tries to find distinct threads of control flow running through a
basic block.  This pass looks at blocks that have multiple predecessors and
multiple successors.  If one or more of the predecessors of the block can be
proven to always cause a jump to one of the successors, we forward the edge
from the predecessor to the successor by duplicating the contents of this
block.

An example of when this can occur is code like this:

.. code-block:: c++

  if () { ...
    X = 4;
  }
  if (X < 3) {

In this case, the unconditional branch at the end of the first if can be
revectored to the false side of the second if.

``-lcssa``: Loop-Closed SSA Form Pass
-------------------------------------

This pass transforms loops by placing phi nodes at the end of the loops for all
values that are live across the loop boundary.  For example, it turns the left
into the right code:

.. code-block:: c++

  for (...)                for (...)
      if (c)                   if (c)
          X1 = ...                 X1 = ...
      else                     else
          X2 = ...                 X2 = ...
      X3 = phi(X1, X2)         X3 = phi(X1, X2)
  ... = X3 + 4              X4 = phi(X3)
                              ... = X4 + 4

This is still valid LLVM; the extra phi nodes are purely redundant, and will be
trivially eliminated by ``InstCombine``.  The major benefit of this
transformation is that it makes many other loop optimizations, such as
``LoopUnswitch``\ ing, simpler.

.. _passes-licm:

``-licm``: Loop Invariant Code Motion
-------------------------------------

This pass performs loop invariant code motion, attempting to remove as much
code from the body of a loop as possible.  It does this by either hoisting code
into the preheader block, or by sinking code to the exit blocks if it is safe.
This pass also promotes must-aliased memory locations in the loop to live in
registers, thus hoisting and sinking "invariant" loads and stores.

This pass uses alias analysis for two purposes:

#. Moving loop invariant loads and calls out of loops.  If we can determine
   that a load or call inside of a loop never aliases anything stored to, we
   can hoist it or sink it like any other instruction.

#. Scalar Promotion of Memory.  If there is a store instruction inside of the
   loop, we try to move the store to happen AFTER the loop instead of inside of
   the loop.  This can only happen if a few conditions are true:

   #. The pointer stored through is loop invariant.
   #. There are no stores or loads in the loop which *may* alias the pointer.
      There are no calls in the loop which mod/ref the pointer.

   If these conditions are true, we can promote the loads and stores in the
   loop of the pointer to use a temporary alloca'd variable.  We then use the
   :ref:`mem2reg <passes-mem2reg>` functionality to construct the appropriate
   SSA form for the variable.

``-loop-deletion``: Delete dead loops
-------------------------------------

This file implements the Dead Loop Deletion Pass.  This pass is responsible for
eliminating loops with non-infinite computable trip counts that have no side
effects or volatile instructions, and do not contribute to the computation of
the function's return value.

.. _passes-loop-extract:

``-loop-extract``: Extract loops into new functions
---------------------------------------------------

A pass wrapper around the ``ExtractLoop()`` scalar transformation to extract
each top-level loop into its own new function.  If the loop is the *only* loop
in a given function, it is not touched.  This is a pass most useful for
debugging via bugpoint.

``-loop-extract-single``: Extract at most one loop into a new function
----------------------------------------------------------------------

Similar to :ref:`Extract loops into new functions <passes-loop-extract>`, this
pass extracts one natural loop from the program into a function if it can.
This is used by :program:`bugpoint`.

``-loop-reduce``: Loop Strength Reduction
-----------------------------------------

This pass performs a strength reduction on array references inside loops that
have as one or more of their components the loop induction variable.  This is
accomplished by creating a new value to hold the initial value of the array
access for the first iteration, and then creating a new GEP instruction in the
loop to increment the value by the appropriate amount.

``-loop-rotate``: Rotate Loops
------------------------------

A simple loop rotation transformation.

``-loop-simplify``: Canonicalize natural loops
----------------------------------------------

This pass performs several transformations to transform natural loops into a
simpler form, which makes subsequent analyses and transformations simpler and
more effective.

Loop pre-header insertion guarantees that there is a single, non-critical entry
edge from outside of the loop to the loop header.  This simplifies a number of
analyses and transformations, such as :ref:`LICM <passes-licm>`.

Loop exit-block insertion guarantees that all exit blocks from the loop (blocks
which are outside of the loop that have predecessors inside of the loop) only
have predecessors from inside of the loop (and are thus dominated by the loop
header).  This simplifies transformations such as store-sinking that are built
into LICM.

This pass also guarantees that loops will have exactly one backedge.

Note that the :ref:`simplifycfg <passes-simplifycfg>` pass will clean up blocks
which are split out but end up being unnecessary, so usage of this pass should
not pessimize generated code.

This pass obviously modifies the CFG, but updates loop information and
dominator information.

``-loop-unroll``: Unroll loops
------------------------------

This pass implements a simple loop unroller.  It works best when loops have
been canonicalized by the :ref:`indvars <passes-indvars>` pass, allowing it to
determine the trip counts of loops easily.

``-loop-unroll-and-jam``: Unroll and Jam loops
----------------------------------------------

This pass implements a simple unroll and jam classical loop optimisation pass.
It transforms loop from:

.. code-block:: c++

  for i.. i+= 1              for i.. i+= 4
    for j..                    for j..
      code(i, j)                 code(i, j)
                                 code(i+1, j)
                                 code(i+2, j)
                                 code(i+3, j)
                             remainder loop

Which can be seen as unrolling the outer loop and "jamming" (fusing) the inner
loops into one. When variables or loads can be shared in the new inner loop, this
can lead to significant performance improvements. It uses
:ref:`Dependence Analysis <passes-da>` for proving the transformations are safe.

``-loop-unswitch``: Unswitch loops
----------------------------------

This pass transforms loops that contain branches on loop-invariant conditions
to have multiple loops.  For example, it turns the left into the right code:

.. code-block:: c++

  for (...)                  if (lic)
      A                          for (...)
      if (lic)                       A; B; C
          B                  else
      C                          for (...)
                                     A; C

This can increase the size of the code exponentially (doubling it every time a
loop is unswitched) so we only unswitch if the resultant code will be smaller
than a threshold.

This pass expects :ref:`LICM <passes-licm>` to be run before it to hoist
invariant conditions out of the loop, to make the unswitching opportunity
obvious.

``-loweratomic``: Lower atomic intrinsics to non-atomic form
------------------------------------------------------------

This pass lowers atomic intrinsics to non-atomic form for use in a known
non-preemptible environment.

The pass does not verify that the environment is non-preemptible (in general
this would require knowledge of the entire call graph of the program including
any libraries which may not be available in bitcode form); it simply lowers
every atomic intrinsic.

``-lowerinvoke``: Lower invokes to calls, for unwindless code generators
------------------------------------------------------------------------

This transformation is designed for use by code generators which do not yet
support stack unwinding.  This pass converts ``invoke`` instructions to
``call`` instructions, so that any exception-handling ``landingpad`` blocks
become dead code (which can be removed by running the ``-simplifycfg`` pass
afterwards).

``-lowerswitch``: Lower ``SwitchInst``\ s to branches
-----------------------------------------------------

Rewrites switch instructions with a sequence of branches, which allows targets
to get away with not implementing the switch instruction until it is
convenient.

.. _passes-mem2reg:

``-mem2reg``: Promote Memory to Register
----------------------------------------

This file promotes memory references to be register references.  It promotes
alloca instructions which only have loads and stores as uses.  An ``alloca`` is
transformed by using dominator frontiers to place phi nodes, then traversing
the function in depth-first order to rewrite loads and stores as appropriate.
This is just the standard SSA construction algorithm to construct "pruned" SSA
form.

``-memcpyopt``: MemCpy Optimization
-----------------------------------

This pass performs various transformations related to eliminating ``memcpy``
calls, or transforming sets of stores into ``memset``\ s.

``-mergefunc``: Merge Functions
-------------------------------

This pass looks for equivalent functions that are mergable and folds them.

Total-ordering is introduced among the functions set: we define comparison
that answers for every two functions which of them is greater. It allows to
arrange functions into the binary tree.

For every new function we check for equivalent in tree.

If equivalent exists we fold such functions. If both functions are overridable,
we move the functionality into a new internal function and leave two
overridable thunks to it.

If there is no equivalent, then we add this function to tree.

Lookup routine has O(log(n)) complexity, while whole merging process has
complexity of O(n*log(n)).

Read
:doc:`this <MergeFunctions>`
article for more details.

``-mergereturn``: Unify function exit nodes
-------------------------------------------

Ensure that functions have at most one ``ret`` instruction in them.
Additionally, it keeps track of which node is the new exit node of the CFG.

``-partial-inliner``: Partial Inliner
-------------------------------------

This pass performs partial inlining, typically by inlining an ``if`` statement
that surrounds the body of the function.

``-prune-eh``: Remove unused exception handling info
----------------------------------------------------

This file implements a simple interprocedural pass which walks the call-graph,
turning invoke instructions into call instructions if and only if the callee
cannot throw an exception.  It implements this as a bottom-up traversal of the
call-graph.

``-reassociate``: Reassociate expressions
-----------------------------------------

This pass reassociates commutative expressions in an order that is designed to
promote better constant propagation, GCSE, :ref:`LICM <passes-licm>`, PRE, etc.

For example: 4 + (x + 5) ⇒ x + (4 + 5)

In the implementation of this algorithm, constants are assigned rank = 0,
function arguments are rank = 1, and other values are assigned ranks
corresponding to the reverse post order traversal of current function (starting
at 2), which effectively gives values in deep loops higher rank than values not
in loops.

``-reg2mem``: Demote all values to stack slots
----------------------------------------------

This file demotes all registers to memory references.  It is intended to be the
inverse of :ref:`mem2reg <passes-mem2reg>`.  By converting to ``load``
instructions, the only values live across basic blocks are ``alloca``
instructions and ``load`` instructions before ``phi`` nodes.  It is intended
that this should make CFG hacking much easier.  To make later hacking easier,
the entry block is split into two, such that all introduced ``alloca``
instructions (and nothing else) are in the entry block.

``-sroa``: Scalar Replacement of Aggregates
------------------------------------------------------

The well-known scalar replacement of aggregates transformation.  This transform
breaks up ``alloca`` instructions of aggregate type (structure or array) into
individual ``alloca`` instructions for each member if possible.  Then, if
possible, it transforms the individual ``alloca`` instructions into nice clean
scalar SSA form.

.. _passes-sccp:

``-sccp``: Sparse Conditional Constant Propagation
--------------------------------------------------

Sparse conditional constant propagation and merging, which can be summarized
as:

* Assumes values are constant unless proven otherwise
* Assumes BasicBlocks are dead unless proven otherwise
* Proves values to be constant, and replaces them with constants
* Proves conditional branches to be unconditional

Note that this pass has a habit of making definitions be dead.  It is a good
idea to run a :ref:`DCE <passes-dce>` pass sometime after running this pass.

.. _passes-simplifycfg:

``-simplifycfg``: Simplify the CFG
----------------------------------

Performs dead code elimination and basic block merging.  Specifically:

* Removes basic blocks with no predecessors.
* Merges a basic block into its predecessor if there is only one and the
  predecessor only has one successor.
* Eliminates PHI nodes for basic blocks with a single predecessor.
* Eliminates a basic block that only contains an unconditional branch.

``-sink``: Code sinking
-----------------------

This pass moves instructions into successor blocks, when possible, so that they
aren't executed on paths where their results aren't needed.

``-strip``: Strip all symbols from a module
-------------------------------------------

Performs code stripping.  This transformation can delete:

* names for virtual registers
* symbols for internal globals and functions
* debug information

Note that this transformation makes code much less readable, so it should only
be used in situations where the strip utility would be used, such as reducing
code size or making it harder to reverse engineer code.

``-strip-dead-debug-info``: Strip debug info for unused symbols
---------------------------------------------------------------

.. FIXME: this description is the same as for -strip

performs code stripping. this transformation can delete:

* names for virtual registers
* symbols for internal globals and functions
* debug information

note that this transformation makes code much less readable, so it should only
be used in situations where the strip utility would be used, such as reducing
code size or making it harder to reverse engineer code.

``-strip-dead-prototypes``: Strip Unused Function Prototypes
------------------------------------------------------------

This pass loops over all of the functions in the input module, looking for dead
declarations and removes them.  Dead declarations are declarations of functions
for which no implementation is available (i.e., declarations for unused library
functions).

``-strip-debug-declare``: Strip all ``llvm.dbg.declare`` intrinsics
-------------------------------------------------------------------

.. FIXME: this description is the same as for -strip

This pass implements code stripping.  Specifically, it can delete:

#. names for virtual registers
#. symbols for internal globals and functions
#. debug information

Note that this transformation makes code much less readable, so it should only
be used in situations where the 'strip' utility would be used, such as reducing
code size or making it harder to reverse engineer code.

``-strip-nondebug``: Strip all symbols, except dbg symbols, from a module
-------------------------------------------------------------------------

.. FIXME: this description is the same as for -strip

This pass implements code stripping.  Specifically, it can delete:

#. names for virtual registers
#. symbols for internal globals and functions
#. debug information

Note that this transformation makes code much less readable, so it should only
be used in situations where the 'strip' utility would be used, such as reducing
code size or making it harder to reverse engineer code.

``-tailcallelim``: Tail Call Elimination
----------------------------------------

This file transforms calls of the current function (self recursion) followed by
a return instruction with a branch to the entry of the function, creating a
loop.  This pass also implements the following extensions to the basic
algorithm:

#. Trivial instructions between the call and return do not prevent the
   transformation from taking place, though currently the analysis cannot
   support moving any really useful instructions (only dead ones).
#. This pass transforms functions that are prevented from being tail recursive
   by an associative expression to use an accumulator variable, thus compiling
   the typical naive factorial or fib implementation into efficient code.
#. TRE is performed if the function returns void, if the return returns the
   result returned by the call, or if the function returns a run-time constant
   on all exits from the function.  It is possible, though unlikely, that the
   return returns something else (like constant 0), and can still be TRE'd.  It
   can be TRE'd if *all other* return instructions in the function return the
   exact same value.
#. If it can prove that callees do not access theier caller stack frame, they
   are marked as eligible for tail call elimination (by the code generator).

Utility Passes
==============

This section describes the LLVM Utility Passes.

``-deadarghaX0r``: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)
------------------------------------------------------------------------

Same as dead argument elimination, but deletes arguments to functions which are
external.  This is only for use by :doc:`bugpoint <Bugpoint>`.

``-extract-blocks``: Extract Basic Blocks From Module (for bugpoint use)
------------------------------------------------------------------------

This pass is used by bugpoint to extract all blocks from the module into their
own functions.

``-instnamer``: Assign names to anonymous instructions
------------------------------------------------------

This is a little utility pass that gives instructions names, this is mostly
useful when diffing the effect of an optimization because deleting an unnamed
instruction can change all other instruction numbering, making the diff very
noisy.

.. _passes-verify:

``-verify``: Module Verifier
----------------------------

Verifies an LLVM IR code.  This is useful to run after an optimization which is
undergoing testing.  Note that llvm-as verifies its input before emitting
bitcode, and also that malformed bitcode is likely to make LLVM crash.  All
language front-ends are therefore encouraged to verify their output before
performing optimizing transformations.

#. Both of a binary operator's parameters are of the same type.
#. Verify that the indices of mem access instructions match other operands.
#. Verify that arithmetic and other things are only performed on first-class
   types.  Verify that shifts and logicals only happen on integrals f.e.
#. All of the constants in a switch statement are of the correct type.
#. The code is in valid SSA form.
#. It is illegal to put a label into any other type (like a structure) or to
   return one.
#. Only phi nodes can be self referential: ``%x = add i32 %x``, ``%x`` is
   invalid.
#. PHI nodes must have an entry for each predecessor, with no extras.
#. PHI nodes must be the first thing in a basic block, all grouped together.
#. PHI nodes must have at least one entry.
#. All basic blocks should only end with terminator insts, not contain them.
#. The entry node to a function must not have predecessors.
#. All Instructions must be embedded into a basic block.
#. Functions cannot take a void-typed parameter.
#. Verify that a function's argument list agrees with its declared type.
#. It is illegal to specify a name for a void value.
#. It is illegal to have an internal global value with no initializer.
#. It is illegal to have a ``ret`` instruction that returns a value that does
   not agree with the function return value type.
#. Function call argument types match the function prototype.
#. All other things that are tested by asserts spread about the code.

Note that this does not provide full security verification (like Java), but
instead just tries to ensure that code is well-formed.

``-view-cfg``: View CFG of function
-----------------------------------

Displays the control flow graph using the GraphViz tool.

``-view-cfg-only``: View CFG of function (with no function bodies)
------------------------------------------------------------------

Displays the control flow graph using the GraphViz tool, but omitting function
bodies.

``-view-dom``: View dominance tree of function
----------------------------------------------

Displays the dominator tree using the GraphViz tool.

``-view-dom-only``: View dominance tree of function (with no function bodies)
-----------------------------------------------------------------------------

Displays the dominator tree using the GraphViz tool, but omitting function
bodies.

``-view-postdom``: View postdominance tree of function
------------------------------------------------------

Displays the post dominator tree using the GraphViz tool.

``-view-postdom-only``: View postdominance tree of function (with no function bodies)
-------------------------------------------------------------------------------------

Displays the post dominator tree using the GraphViz tool, but omitting function
bodies.

``-transform-warning``: Report missed forced transformations
------------------------------------------------------------

Emits warnings about not yet applied forced transformations (e.g. from
``#pragma omp simd``).