reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
==============================
TableGen Language Introduction
==============================

.. contents::
   :local:

.. warning::
   This document is extremely rough. If you find something lacking, please
   fix it, file a documentation bug, or ask about it on llvm-dev.

Introduction
============

This document is not meant to be a normative spec about the TableGen language
in and of itself (i.e. how to understand a given construct in terms of how
it affects the final set of records represented by the TableGen file). For
the formal language specification, see :doc:`LangRef`.

TableGen syntax
===============

TableGen doesn't care about the meaning of data (that is up to the backend to
define), but it does care about syntax, and it enforces a simple type system.
This section describes the syntax and the constructs allowed in a TableGen file.

TableGen primitives
-------------------

TableGen comments
^^^^^^^^^^^^^^^^^

TableGen supports C++ style "``//``" comments, which run to the end of the
line, and it also supports **nestable** "``/* */``" comments.

.. _TableGen type:

The TableGen type system
^^^^^^^^^^^^^^^^^^^^^^^^

TableGen files are strongly typed, in a simple (but complete) type-system.
These types are used to perform automatic conversions, check for errors, and to
help interface designers constrain the input that they allow.  Every `value
definition`_ is required to have an associated type.

TableGen supports a mixture of very low-level types (such as ``bit``) and very
high-level types (such as ``dag``).  This flexibility is what allows it to
describe a wide range of information conveniently and compactly.  The TableGen
types are:

``bit``
    A 'bit' is a boolean value that can hold either 0 or 1.

``int``
    The 'int' type represents a simple 32-bit integer value, such as 5.

``string``
    The 'string' type represents an ordered sequence of characters of arbitrary
    length.

``code``
    The `code` type represents a code fragment, which can be single/multi-line
    string literal.

``bits<n>``
    A 'bits' type is an arbitrary, but fixed, size integer that is broken up
    into individual bits.  This type is useful because it can handle some bits
    being defined while others are undefined.

``list<ty>``
    This type represents a list whose elements are some other type.  The
    contained type is arbitrary: it can even be another list type.

Class type
    Specifying a class name in a type context means that the defined value must
    be a subclass of the specified class.  This is useful in conjunction with
    the ``list`` type, for example, to constrain the elements of the list to a
    common base class (e.g., a ``list<Register>`` can only contain definitions
    derived from the "``Register``" class).

``dag``
    This type represents a nestable directed graph of elements.

To date, these types have been sufficient for describing things that TableGen
has been used for, but it is straight-forward to extend this list if needed.

.. _TableGen expressions:

TableGen values and expressions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

TableGen allows for a pretty reasonable number of different expression forms
when building up values.  These forms allow the TableGen file to be written in a
natural syntax and flavor for the application.  The current expression forms
supported include:

``?``
    uninitialized field

``0b1001011``
    binary integer value.
    Note that this is sized by the number of bits given and will not be
    silently extended/truncated.

``7``
    decimal integer value

``0x7F``
    hexadecimal integer value

``"foo"``
    a single-line string value, can be assigned to ``string`` or ``code`` variable.

``[{ ... }]``
    usually called a "code fragment", but is just a multiline string literal

``[ X, Y, Z ]<type>``
    list value.  <type> is the type of the list element and is usually optional.
    In rare cases, TableGen is unable to deduce the element type in which case
    the user must specify it explicitly.

``{ a, b, 0b10 }``
    initializer for a "bits<4>" value.
    1-bit from "a", 1-bit from "b", 2-bits from 0b10.

``value``
    value reference

``value{17}``
    access to one bit of a value

``value{15-17}``
    access to an ordered sequence of bits of a value, in particular ``value{15-17}``
    produces an order that is the reverse of ``value{17-15}``.

``DEF``
    reference to a record definition

``CLASS<val list>``
    reference to a new anonymous definition of CLASS with the specified template
    arguments.

``X.Y``
    reference to the subfield of a value

``list[4-7,17,2-3]``
    A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
    Elements may be included multiple times.

``foreach <var> = [ <list> ] in { <body> }``

``foreach <var> = [ <list> ] in <def>``
    Replicate <body> or <def>, replacing instances of <var> with each value
    in <list>.  <var> is scoped at the level of the ``foreach`` loop and must
    not conflict with any other object introduced in <body> or <def>.  Only
    ``def``\s and ``defm``\s are expanded within <body>.

``foreach <var> = 0-15 in ...``

``foreach <var> = {0-15,32-47} in ...``
    Loop over ranges of integers. The braces are required for multiple ranges.

``(DEF a, b)``
    a dag value.  The first element is required to be a record definition, the
    remaining elements in the list may be arbitrary other values, including
    nested ```dag``' values.

``!con(a, b, ...)``
    Concatenate two or more DAG nodes. Their operations must equal.

    Example: !con((op a1:$name1, a2:$name2), (op b1:$name3)) results in
    the DAG node (op a1:$name1, a2:$name2, b1:$name3).

``!dag(op, children, names)``
    Generate a DAG node programmatically. 'children' and 'names' must be lists
    of equal length or unset ('?'). 'names' must be a 'list<string>'.

    Due to limitations of the type system, 'children' must be a list of items
    of a common type. In practice, this means that they should either have the
    same type or be records with a common superclass. Mixing dag and non-dag
    items is not possible. However, '?' can be used.

    Example: !dag(op, [a1, a2, ?], ["name1", "name2", "name3"]) results in
    (op a1:$name1, a2:$name2, ?:$name3).

``!listconcat(a, b, ...)``
    A list value that is the result of concatenating the 'a' and 'b' lists.
    The lists must have the same element type.
    More than two arguments are accepted with the result being the concatenation
    of all the lists given.

``!listsplat(a, size)``
    A list value that contains the value ``a`` ``size`` times.
    Example: ``!listsplat(0, 2)`` results in ``[0, 0]``.

``!strconcat(a, b, ...)``
    A string value that is the result of concatenating the 'a' and 'b' strings.
    More than two arguments are accepted with the result being the concatenation
    of all the strings given.

``str1#str2``
    "#" (paste) is a shorthand for !strconcat.  It may concatenate things that
    are not quoted strings, in which case an implicit !cast<string> is done on
    the operand of the paste.

``!cast<type>(a)``
    If 'a' is a string, a record of type *type* obtained by looking up the
    string 'a' in the list of all records defined by the time that all template
    arguments in 'a' are fully resolved.

    For example, if !cast<type>(a) appears in a multiclass definition, or in a
    class instantiated inside of a multiclass definition, and 'a' does not
    reference any template arguments of the multiclass, then a record of name
    'a' must be instantiated earlier in the source file. If 'a' does reference
    a template argument, then the lookup is delayed until defm statements
    instantiating the multiclass (or later, if the defm occurs in another
    multiclass and template arguments of the inner multiclass that are
    referenced by 'a' are substituted by values that themselves contain
    references to template arguments of the outer multiclass).

    If the type of 'a' does not match *type*, TableGen aborts with an error.

    Otherwise, perform a normal type cast e.g. between an int and a bit, or
    between record types. This allows casting a record to a subclass, though if
    the types do not match, constant folding will be inhibited. !cast<string>
    is a special case in that the argument can be an int or a record. In the
    latter case, the record's name is returned.

``!isa<type>(a)``
    Returns an integer: 1 if 'a' is dynamically of the given type, 0 otherwise.

``!subst(a, b, c)``
    If 'a' and 'b' are of string type or are symbol references, substitute 'b'
    for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.

``!foreach(a, b, c)``
    For each member of dag or list 'b' apply operator 'c'. 'a' is the name
    of a variable that will be substituted by members of 'b' in 'c'.
    This operation is analogous to $(foreach) in GNU make.

``!foldl(start, lst, a, b, expr)``
    Perform a left-fold over 'lst' with the given starting value. 'a' and 'b'
    are variable names which will be substituted in 'expr'. If you think of
    expr as a function f(a,b), the fold will compute
    'f(...f(f(start, lst[0]), lst[1]), ...), lst[n-1])' for a list of length n.
    As usual, 'a' will be of the type of 'start', and 'b' will be of the type
    of elements of 'lst'. These types need not be the same, but 'expr' must be
    of the same type as 'start'.

``!head(a)``
    The first element of list 'a.'

``!tail(a)``
    The 2nd-N elements of list 'a.'

``!empty(a)``
    An integer {0,1} indicating whether list 'a' is empty.

``!size(a)``
    An integer indicating the number of elements in list 'a'.

``!if(a,b,c)``
  'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.

``!cond(condition_1 : val1, condition_2 : val2, ..., condition_n : valn)``
    Instead of embedding !if inside !if which can get cumbersome,
    one can use !cond. !cond returns 'val1' if the result of 'int' or 'bit'
    operator 'condition1' is nonzero. Otherwise, it checks 'condition2'.
    If 'condition2' is nonzero, returns 'val2', and so on.
    If all conditions are zero, it reports an error.  

    For example, to convert an integer 'x' into a string:
      !cond(!lt(x,0) : "negative", !eq(x,0) : "zero", 1 : "positive")

``!eq(a,b)``
    'bit 1' if string a is equal to string b, 0 otherwise.  This only operates
    on string, int and bit objects.  Use !cast<string> to compare other types of
    objects.

``!ne(a,b)``
    The negation of ``!eq(a,b)``.

``!le(a,b), !lt(a,b), !ge(a,b), !gt(a,b)``
    (Signed) comparison of integer values that returns bit 1 or 0 depending on
    the result of the comparison.

``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)``
    The usual shift operators. Operations are on 64-bit integers, the result
    is undefined for shift counts outside [0, 63].

``!add(a,b,...)`` ``!mul(a,b,...)`` ``!and(a,b,...)`` ``!or(a,b,...)``
    The usual arithmetic and binary operators.

Note that all of the values have rules specifying how they convert to values
for different types.  These rules allow you to assign a value like "``7``"
to a "``bits<4>``" value, for example.

Classes and definitions
-----------------------

As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
'records') in TableGen are the main high-level unit of information that TableGen
collects.  Records are defined with a ``def`` or ``class`` keyword, the record
name, and an optional list of "`template arguments`_".  If the record has
superclasses, they are specified as a comma separated list that starts with a
colon character ("``:``").  If `value definitions`_ or `let expressions`_ are
needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
the record ends with a semicolon.

Here is a simple TableGen file:

.. code-block:: text

  class C { bit V = 1; }
  def X : C;
  def Y : C {
    string Greeting = "hello";
  }

This example defines two definitions, ``X`` and ``Y``, both of which derive from
the ``C`` class.  Because of this, they both get the ``V`` bit value.  The ``Y``
definition also gets the Greeting member as well.

In general, classes are useful for collecting together the commonality between a
group of records and isolating it in a single place.  Also, classes permit the
specification of default values for their subclasses, allowing the subclasses to
override them as they wish.

.. _value definition:
.. _value definitions:

Value definitions
^^^^^^^^^^^^^^^^^

Value definitions define named entries in records.  A value must be defined
before it can be referred to as the operand for another value definition or
before the value is reset with a `let expression`_.  A value is defined by
specifying a `TableGen type`_ and a name.  If an initial value is available, it
may be specified after the type with an equal sign.  Value definitions require
terminating semicolons.

.. _let expression:
.. _let expressions:
.. _"let" expressions within a record:

'let' expressions
^^^^^^^^^^^^^^^^^

A record-level let expression is used to change the value of a value definition
in a record.  This is primarily useful when a superclass defines a value that a
derived class or definition wants to override.  Let expressions consist of the
'``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
value.  For example, a new class could be added to the example above, redefining
the ``V`` field for all of its subclasses:

.. code-block:: text

  class D : C { let V = 0; }
  def Z : D;

In this case, the ``Z`` definition will have a zero value for its ``V`` value,
despite the fact that it derives (indirectly) from the ``C`` class, because the
``D`` class overrode its value.

References between variables in a record are substituted late, which gives
``let`` expressions unusual power. Consider this admittedly silly example:

.. code-block:: text

  class A<int x> {
    int Y = x;
    int Yplus1 = !add(Y, 1);
    int xplus1 = !add(x, 1);
  }
  def Z : A<5> {
    let Y = 10;
  }

The value of ``Z.xplus1`` will be 6, but the value of ``Z.Yplus1`` is 11. Use
this power wisely.

.. _template arguments:

Class template arguments
^^^^^^^^^^^^^^^^^^^^^^^^

TableGen permits the definition of parameterized classes as well as normal
concrete classes.  Parameterized TableGen classes specify a list of variable
bindings (which may optionally have defaults) that are bound when used.  Here is
a simple example:

.. code-block:: text

  class FPFormat<bits<3> val> {
    bits<3> Value = val;
  }
  def NotFP      : FPFormat<0>;
  def ZeroArgFP  : FPFormat<1>;
  def OneArgFP   : FPFormat<2>;
  def OneArgFPRW : FPFormat<3>;
  def TwoArgFP   : FPFormat<4>;
  def CompareFP  : FPFormat<5>;
  def CondMovFP  : FPFormat<6>;
  def SpecialFP  : FPFormat<7>;

In this case, template arguments are used as a space efficient way to specify a
list of "enumeration values", each with a "``Value``" field set to the specified
integer.

The more esoteric forms of `TableGen expressions`_ are useful in conjunction
with template arguments.  As an example:

.. code-block:: text

  class ModRefVal<bits<2> val> {
    bits<2> Value = val;
  }

  def None   : ModRefVal<0>;
  def Mod    : ModRefVal<1>;
  def Ref    : ModRefVal<2>;
  def ModRef : ModRefVal<3>;

  class Value<ModRefVal MR> {
    // Decode some information into a more convenient format, while providing
    // a nice interface to the user of the "Value" class.
    bit isMod = MR.Value{0};
    bit isRef = MR.Value{1};

    // other stuff...
  }

  // Example uses
  def bork : Value<Mod>;
  def zork : Value<Ref>;
  def hork : Value<ModRef>;

This is obviously a contrived example, but it shows how template arguments can
be used to decouple the interface provided to the user of the class from the
actual internal data representation expected by the class.  In this case,
running ``llvm-tblgen`` on the example prints the following definitions:

.. code-block:: text

  def bork {      // Value
    bit isMod = 1;
    bit isRef = 0;
  }
  def hork {      // Value
    bit isMod = 1;
    bit isRef = 1;
  }
  def zork {      // Value
    bit isMod = 0;
    bit isRef = 1;
  }

This shows that TableGen was able to dig into the argument and extract a piece
of information that was requested by the designer of the "Value" class.  For
more realistic examples, please see existing users of TableGen, such as the X86
backend.

Multiclass definitions and instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

While classes with template arguments are a good way to factor commonality
between two instances of a definition, multiclasses allow a convenient notation
for defining multiple definitions at once (instances of implicitly constructed
classes).  For example, consider an 3-address instruction set whose instructions
come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
(e.g. SPARC). In this case, you'd like to specify in one place that this
commonality exists, then in a separate place indicate what all the ops are.

Here is an example TableGen fragment that shows this idea:

.. code-block:: text

  def ops;
  def GPR;
  def Imm;
  class inst<int opc, string asmstr, dag operandlist>;

  multiclass ri_inst<int opc, string asmstr> {
    def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
                   (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
    def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
                   (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
  }

  // Instantiations of the ri_inst multiclass.
  defm ADD : ri_inst<0b111, "add">;
  defm SUB : ri_inst<0b101, "sub">;
  defm MUL : ri_inst<0b100, "mul">;
  ...

The name of the resultant definitions has the multidef fragment names appended
to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc.  A defm may
inherit from multiple multiclasses, instantiating definitions from each
multiclass.  Using a multiclass this way is exactly equivalent to instantiating
the classes multiple times yourself, e.g. by writing:

.. code-block:: text

  def ops;
  def GPR;
  def Imm;
  class inst<int opc, string asmstr, dag operandlist>;

  class rrinst<int opc, string asmstr>
    : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
           (ops GPR:$dst, GPR:$src1, GPR:$src2)>;

  class riinst<int opc, string asmstr>
    : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
           (ops GPR:$dst, GPR:$src1, Imm:$src2)>;

  // Instantiations of the ri_inst multiclass.
  def ADD_rr : rrinst<0b111, "add">;
  def ADD_ri : riinst<0b111, "add">;
  def SUB_rr : rrinst<0b101, "sub">;
  def SUB_ri : riinst<0b101, "sub">;
  def MUL_rr : rrinst<0b100, "mul">;
  def MUL_ri : riinst<0b100, "mul">;
  ...

A ``defm`` can also be used inside a multiclass providing several levels of
multiclass instantiations.

.. code-block:: text

  class Instruction<bits<4> opc, string Name> {
    bits<4> opcode = opc;
    string name = Name;
  }

  multiclass basic_r<bits<4> opc> {
    def rr : Instruction<opc, "rr">;
    def rm : Instruction<opc, "rm">;
  }

  multiclass basic_s<bits<4> opc> {
    defm SS : basic_r<opc>;
    defm SD : basic_r<opc>;
    def X : Instruction<opc, "x">;
  }

  multiclass basic_p<bits<4> opc> {
    defm PS : basic_r<opc>;
    defm PD : basic_r<opc>;
    def Y : Instruction<opc, "y">;
  }

  defm ADD : basic_s<0xf>, basic_p<0xf>;
  ...

  // Results
  def ADDPDrm { ...
  def ADDPDrr { ...
  def ADDPSrm { ...
  def ADDPSrr { ...
  def ADDSDrm { ...
  def ADDSDrr { ...
  def ADDY { ...
  def ADDX { ...

``defm`` declarations can inherit from classes too, the rule to follow is that
the class list must start after the last multiclass, and there must be at least
one multiclass before them.

.. code-block:: text

  class XD { bits<4> Prefix = 11; }
  class XS { bits<4> Prefix = 12; }

  class I<bits<4> op> {
    bits<4> opcode = op;
  }

  multiclass R {
    def rr : I<4>;
    def rm : I<2>;
  }

  multiclass Y {
    defm SS : R, XD;
    defm SD : R, XS;
  }

  defm Instr : Y;

  // Results
  def InstrSDrm {
    bits<4> opcode = { 0, 0, 1, 0 };
    bits<4> Prefix = { 1, 1, 0, 0 };
  }
  ...
  def InstrSSrr {
    bits<4> opcode = { 0, 1, 0, 0 };
    bits<4> Prefix = { 1, 0, 1, 1 };
  }

File scope entities
-------------------

File inclusion
^^^^^^^^^^^^^^

TableGen supports the '``include``' token, which textually substitutes the
specified file in place of the include directive.  The filename should be
specified as a double quoted string immediately after the '``include``' keyword.
Example:

.. code-block:: text

  include "foo.td"

'let' expressions
^^^^^^^^^^^^^^^^^

"Let" expressions at file scope are similar to `"let" expressions within a
record`_, except they can specify a value binding for multiple records at a
time, and may be useful in certain other cases.  File-scope let expressions are
really just another way that TableGen allows the end-user to factor out
commonality from the records.

File-scope "let" expressions take a comma-separated list of bindings to apply,
and one or more records to bind the values in.  Here are some examples:

.. code-block:: text

  let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
    def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;

  let isCall = 1 in
    // All calls clobber the non-callee saved registers...
    let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
                MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
                XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
      def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
                             "call\t${dst:call}", []>;
      def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
                          "call\t{*}$dst", [(X86call GR32:$dst)]>;
      def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
                          "call\t{*}$dst", []>;
    }

File-scope "let" expressions are often useful when a couple of definitions need
to be added to several records, and the records do not otherwise need to be
opened, as in the case with the ``CALL*`` instructions above.

It's also possible to use "let" expressions inside multiclasses, providing more
ways to factor out commonality from the records, specially if using several
levels of multiclass instantiations. This also avoids the need of using "let"
expressions within subsequent records inside a multiclass.

.. code-block:: text

  multiclass basic_r<bits<4> opc> {
    let Predicates = [HasSSE2] in {
      def rr : Instruction<opc, "rr">;
      def rm : Instruction<opc, "rm">;
    }
    let Predicates = [HasSSE3] in
      def rx : Instruction<opc, "rx">;
  }

  multiclass basic_ss<bits<4> opc> {
    let IsDouble = 0 in
      defm SS : basic_r<opc>;

    let IsDouble = 1 in
      defm SD : basic_r<opc>;
  }

  defm ADD : basic_ss<0xf>;

Looping
^^^^^^^

TableGen supports the '``foreach``' block, which textually replicates the loop
body, substituting iterator values for iterator references in the body.
Example:

.. code-block:: text

  foreach i = [0, 1, 2, 3] in {
    def R#i : Register<...>;
    def F#i : Register<...>;
  }

This will create objects ``R0``, ``R1``, ``R2`` and ``R3``.  ``foreach`` blocks
may be nested. If there is only one item in the body the braces may be
elided:

.. code-block:: text

  foreach i = [0, 1, 2, 3] in
    def R#i : Register<...>;

Code Generator backend info
===========================

Expressions used by code generator to describe instructions and isel patterns:

``(implicit a)``
    an implicitly defined physical register.  This tells the dag instruction
    selection emitter the input pattern's extra definitions matches implicit
    physical register definitions.