reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
===========================
TableGen Language Reference
===========================

.. contents::
   :local:

.. warning::
   This document is extremely rough. If you find something lacking, please
   fix it, file a documentation bug, or ask about it on llvm-dev.

Introduction
============

This document is meant to be a normative spec about the TableGen language
in and of itself (i.e. how to understand a given construct in terms of how
it affects the final set of records represented by the TableGen file). If
you are unsure if this document is really what you are looking for, please
read the :doc:`introduction to TableGen <index>` first.

Notation
========

The lexical and syntax notation used here is intended to imitate
`Python's`_. In particular, for lexical definitions, the productions
operate at the character level and there is no implied whitespace between
elements. The syntax definitions operate at the token level, so there is
implied whitespace between tokens.

.. _`Python's`: http://docs.python.org/py3k/reference/introduction.html#notation

Lexical Analysis
================

TableGen supports BCPL (``// ...``) and nestable C-style (``/* ... */``)
comments.  TableGen also provides simple `Preprocessing Support`_.

The following is a listing of the basic punctuation tokens::

   - + [ ] { } ( ) < > : ; .  = ? #

Numeric literals take one of the following forms:

.. TableGen actually will lex some pretty strange sequences an interpret
   them as numbers. What is shown here is an attempt to approximate what it
   "should" accept.

.. productionlist::
   TokInteger: `DecimalInteger` | `HexInteger` | `BinInteger`
   DecimalInteger: ["+" | "-"] ("0"..."9")+
   HexInteger: "0x" ("0"..."9" | "a"..."f" | "A"..."F")+
   BinInteger: "0b" ("0" | "1")+

One aspect to note is that the :token:`DecimalInteger` token *includes* the
``+`` or ``-``, as opposed to having ``+`` and ``-`` be unary operators as
most languages do.

Also note that :token:`BinInteger` creates a value of type ``bits<n>``
(where ``n`` is the number of bits).  This will implicitly convert to
integers when needed.

TableGen has identifier-like tokens:

.. productionlist::
   ualpha: "a"..."z" | "A"..."Z" | "_"
   TokIdentifier: ("0"..."9")* `ualpha` (`ualpha` | "0"..."9")*
   TokVarName: "$" `ualpha` (`ualpha` |  "0"..."9")*

Note that unlike most languages, TableGen allows :token:`TokIdentifier` to
begin with a number. In case of ambiguity, a token will be interpreted as a
numeric literal rather than an identifier.

TableGen also has two string-like literals:

.. productionlist::
   TokString: '"' <non-'"' characters and C-like escapes> '"'
   TokCodeFragment: "[{" <shortest text not containing "}]"> "}]"

:token:`TokCodeFragment` is essentially a multiline string literal
delimited by ``[{`` and ``}]``.

.. note::
   The current implementation accepts the following C-like escapes::

      \\ \' \" \t \n

TableGen also has the following keywords::

   bit   bits      class   code         dag
   def   foreach   defm    field        in
   int   let       list    multiclass   string

TableGen also has "bang operators" which have a
wide variety of meanings:

.. productionlist::
   BangOperator: one of
               :!eq     !if      !head    !tail      !con
               :!add    !shl     !sra     !srl       !and
               :!or     !empty   !subst   !foreach   !strconcat
               :!cast   !listconcat       !size      !foldl
               :!isa    !dag     !le      !lt        !ge
               :!gt     !ne      !mul     !listsplat

TableGen also has !cond operator that needs a slightly different
syntax compared to other "bang operators":

.. productionlist::
   CondOperator: !cond


Syntax
======

TableGen has an ``include`` mechanism. It does not play a role in the
syntax per se, since it is lexically replaced with the contents of the
included file.

.. productionlist::
   IncludeDirective: "include" `TokString`

TableGen's top-level production consists of "objects".

.. productionlist::
   TableGenFile: `Object`*
   Object: `Class` | `Def` | `Defm` | `Defset` | `Let` | `MultiClass` |
           `Foreach`

``class``\es
------------

.. productionlist::
   Class: "class" `TokIdentifier` [`TemplateArgList`] `ObjectBody`
   TemplateArgList: "<" `Declaration` ("," `Declaration`)* ">"

A ``class`` declaration creates a record which other records can inherit
from. A class can be parametrized by a list of "template arguments", whose
values can be used in the class body.

A given class can only be defined once. A ``class`` declaration is
considered to define the class if any of the following is true:

.. break ObjectBody into its consituents so that they are present here?

#. The :token:`TemplateArgList` is present.
#. The :token:`Body` in the :token:`ObjectBody` is present and is not empty.
#. The :token:`BaseClassList` in the :token:`ObjectBody` is present.

You can declare an empty class by giving an empty :token:`TemplateArgList`
and an empty :token:`ObjectBody`. This can serve as a restricted form of
forward declaration: note that records deriving from the forward-declared
class will inherit no fields from it since the record expansion is done
when the record is parsed.

Every class has an implicit template argument called ``NAME``, which is set
to the name of the instantiating ``def`` or ``defm``. The result is undefined
if the class is instantiated by an anonymous record.

Declarations
------------

.. Omitting mention of arcane "field" prefix to discourage its use.

The declaration syntax is pretty much what you would expect as a C++
programmer.

.. productionlist::
   Declaration: `Type` `TokIdentifier` ["=" `Value`]

It assigns the value to the identifier.

Types
-----

.. productionlist::
   Type: "string" | "code" | "bit" | "int" | "dag"
       :| "bits" "<" `TokInteger` ">"
       :| "list" "<" `Type` ">"
       :| `ClassID`
   ClassID: `TokIdentifier`

Both ``string`` and ``code`` correspond to the string type; the difference
is purely to indicate programmer intention.

The :token:`ClassID` must identify a class that has been previously
declared or defined.

Values
------

.. productionlist::
   Value: `SimpleValue` `ValueSuffix`*
   ValueSuffix: "{" `RangeList` "}"
              :| "[" `RangeList` "]"
              :| "." `TokIdentifier`
   RangeList: `RangePiece` ("," `RangePiece`)*
   RangePiece: `TokInteger`
             :| `TokInteger` "-" `TokInteger`
             :| `TokInteger` `TokInteger`

The peculiar last form of :token:`RangePiece` is due to the fact that the
"``-``" is included in the :token:`TokInteger`, hence ``1-5`` gets lexed as
two consecutive :token:`TokInteger`'s, with values ``1`` and ``-5``,
instead of "1", "-", and "5".
The :token:`RangeList` can be thought of as specifying "list slice" in some
contexts.


:token:`SimpleValue` has a number of forms:


.. productionlist::
   SimpleValue: `TokIdentifier`

The value will be the variable referenced by the identifier. It can be one
of:

.. The code for this is exceptionally abstruse. These examples are a
   best-effort attempt.

* name of a ``def``, such as the use of ``Bar`` in::

     def Bar : SomeClass {
       int X = 5;
     }

     def Foo {
       SomeClass Baz = Bar;
     }

* value local to a ``def``, such as the use of ``Bar`` in::

     def Foo {
       int Bar = 5;
       int Baz = Bar;
     }

  Values defined in superclasses can be accessed the same way.

* a template arg of a ``class``, such as the use of ``Bar`` in::

     class Foo<int Bar> {
       int Baz = Bar;
     }

* value local to a ``class``, such as the use of ``Bar`` in::

     class Foo {
       int Bar = 5;
       int Baz = Bar;
     }

* a template arg to a ``multiclass``, such as the use of ``Bar`` in::

     multiclass Foo<int Bar> {
       def : SomeClass<Bar>;
     }

* the iteration variable of a ``foreach``, such as the use of ``i`` in::

     foreach i = 0-5 in
     def Foo#i;

* a variable defined by ``defset``

* the implicit template argument ``NAME`` in a ``class`` or ``multiclass``

.. productionlist::
   SimpleValue: `TokInteger`

This represents the numeric value of the integer.

.. productionlist::
   SimpleValue: `TokString`+

Multiple adjacent string literals are concatenated like in C/C++. The value
is the concatenation of the strings.

.. productionlist::
   SimpleValue: `TokCodeFragment`

The value is the string value of the code fragment.

.. productionlist::
   SimpleValue: "?"

``?`` represents an "unset" initializer.

.. productionlist::
   SimpleValue: "{" `ValueList` "}"
   ValueList: [`ValueListNE`]
   ValueListNE: `Value` ("," `Value`)*

This represents a sequence of bits, as would be used to initialize a
``bits<n>`` field (where ``n`` is the number of bits).

.. productionlist::
   SimpleValue: `ClassID` "<" `ValueListNE` ">"

This generates a new anonymous record definition (as would be created by an
unnamed ``def`` inheriting from the given class with the given template
arguments) and the value is the value of that record definition.

.. productionlist::
   SimpleValue: "[" `ValueList` "]" ["<" `Type` ">"]

A list initializer. The optional :token:`Type` can be used to indicate a
specific element type, otherwise the element type will be deduced from the
given values.

.. The initial `DagArg` of the dag must start with an identifier or
   !cast, but this is more of an implementation detail and so for now just
   leave it out.

.. productionlist::
   SimpleValue: "(" `DagArg` [`DagArgList`] ")"
   DagArgList: `DagArg` ("," `DagArg`)*
   DagArg: `Value` [":" `TokVarName`] | `TokVarName`

The initial :token:`DagArg` is called the "operator" of the dag.

.. productionlist::
   SimpleValue: `BangOperator` ["<" `Type` ">"] "(" `ValueListNE` ")"
              :| `CondOperator` "(" `CondVal` ("," `CondVal`)* ")"
   CondVal: `Value` ":" `Value`

Bodies
------

.. productionlist::
   ObjectBody: `BaseClassList` `Body`
   BaseClassList: [":" `BaseClassListNE`]
   BaseClassListNE: `SubClassRef` ("," `SubClassRef`)*
   SubClassRef: (`ClassID` | `MultiClassID`) ["<" `ValueList` ">"]
   DefmID: `TokIdentifier`

The version with the :token:`MultiClassID` is only valid in the
:token:`BaseClassList` of a ``defm``.
The :token:`MultiClassID` should be the name of a ``multiclass``.

.. put this somewhere else

It is after parsing the base class list that the "let stack" is applied.

.. productionlist::
   Body: ";" | "{" BodyList "}"
   BodyList: BodyItem*
   BodyItem: `Declaration` ";"
           :| "let" `TokIdentifier` [ "{" `RangeList` "}" ] "=" `Value` ";"

The ``let`` form allows overriding the value of an inherited field.

``def``
-------

.. productionlist::
   Def: "def" [`Value`] `ObjectBody`

Defines a record whose name is given by the optional :token:`Value`. The value
is parsed in a special mode where global identifiers (records and variables
defined by ``defset``) are not recognized, and all unrecognized identifiers
are interpreted as strings.

If no name is given, the record is anonymous. The final name of anonymous
records is undefined, but globally unique.

Special handling occurs if this ``def`` appears inside a ``multiclass`` or
a ``foreach``.

When a non-anonymous record is defined in a multiclass and the given name
does not contain a reference to the implicit template argument ``NAME``, such
a reference will automatically be prepended. That is, the following are
equivalent inside a multiclass::

    def Foo;
    def NAME#Foo;

``defm``
--------

.. productionlist::
   Defm: "defm" [`Value`] ":" `BaseClassListNE` ";"

The :token:`BaseClassList` is a list of at least one ``multiclass`` and any
number of ``class``'s. The ``multiclass``'s must occur before any ``class``'s.

Instantiates all records defined in all given ``multiclass``'s and adds the
given ``class``'s as superclasses.

The name is parsed in the same special mode used by ``def``. If the name is
missing, a globally unique string is used instead (but instantiated records
are not considered to be anonymous, unless they were originally defined by an
anonymous ``def``) That is, the following have different semantics::

    defm : SomeMultiClass<...>;    // some globally unique name
    defm "" : SomeMultiClass<...>; // empty name string

When it occurs inside a multiclass, the second variant is equivalent to
``defm NAME : ...``. More generally, when ``defm`` occurs in a multiclass and
its name does not contain a reference to the implicit template argument
``NAME``, such a reference will automatically be prepended. That is, the
following are equivalent inside a multiclass::

    defm Foo : SomeMultiClass<...>;
    defm NAME#Foo : SomeMultiClass<...>;

``defset``
----------
.. productionlist::
   Defset: "defset" `Type` `TokIdentifier` "=" "{" `Object`* "}"

All records defined inside the braces via ``def`` and ``defm`` are collected
in a globally accessible list of the given name (in addition to being added
to the global collection of records as usual). Anonymous records created inside
initializier expressions using the ``Class<args...>`` syntax are never collected
in a defset.

The given type must be ``list<A>``, where ``A`` is some class. It is an error
to define a record (via ``def`` or ``defm``) inside the braces which doesn't
derive from ``A``.

``foreach``
-----------

.. productionlist::
   Foreach: "foreach" `ForeachDeclaration` "in" "{" `Object`* "}"
          :| "foreach" `ForeachDeclaration` "in" `Object`
   ForeachDeclaration: ID "=" ( "{" `RangeList` "}" | `RangePiece` | `Value` )

The value assigned to the variable in the declaration is iterated over and
the object or object list is reevaluated with the variable set at each
iterated value.

Note that the productions involving RangeList and RangePiece have precedence
over the more generic value parsing based on the first token.

Top-Level ``let``
-----------------

.. productionlist::
   Let:  "let" `LetList` "in" "{" `Object`* "}"
      :| "let" `LetList` "in" `Object`
   LetList: `LetItem` ("," `LetItem`)*
   LetItem: `TokIdentifier` [`RangeList`] "=" `Value`

This is effectively equivalent to ``let`` inside the body of a record
except that it applies to multiple records at a time. The bindings are
applied at the end of parsing the base classes of a record.

``multiclass``
--------------

.. productionlist::
   MultiClass: "multiclass" `TokIdentifier` [`TemplateArgList`]
             : [":" `BaseMultiClassList`] "{" `MultiClassObject`+ "}"
   BaseMultiClassList: `MultiClassID` ("," `MultiClassID`)*
   MultiClassID: `TokIdentifier`
   MultiClassObject: `Def` | `Defm` | `Let` | `Foreach`

Preprocessing Support
=====================

TableGen's embedded preprocessor is only intended for conditional compilation.
It supports the following directives:

.. productionlist::
   LineBegin: ^
   LineEnd: "\n" | "\r" | EOF
   WhiteSpace: " " | "\t"
   CStyleComment: "/*" (.* - "*/") "*/"
   BCPLComment: "//" (.* - `LineEnd`) `LineEnd`
   WhiteSpaceOrCStyleComment: `WhiteSpace` | `CStyleComment`
   WhiteSpaceOrAnyComment: `WhiteSpace` | `CStyleComment` | `BCPLComment`
   MacroName: `ualpha` (`ualpha` | "0"..."9")*
   PrepDefine: `LineBegin` (`WhiteSpaceOrCStyleComment`)*
             : "#define" (`WhiteSpace`)+ `MacroName`
             : (`WhiteSpaceOrAnyComment`)* `LineEnd`
   PrepIfdef: `LineBegin` (`WhiteSpaceOrCStyleComment`)*
            : "#ifdef" (`WhiteSpace`)+ `MacroName`
            : (`WhiteSpaceOrAnyComment`)* `LineEnd`
   PrepElse: `LineBegin` (`WhiteSpaceOrCStyleComment`)*
           : "#else" (`WhiteSpaceOrAnyComment`)* `LineEnd`
   PrepEndif: `LineBegin` (`WhiteSpaceOrCStyleComment`)*
            : "#endif" (`WhiteSpaceOrAnyComment`)* `LineEnd`
   PrepRegContentException: `PrepIfdef` | `PrepElse` | `PrepEndif` | EOF
   PrepRegion: .* - `PrepRegContentException`
             :| `PrepIfdef`
             :  (`PrepRegion`)*
             :  [`PrepElse`]
             :  (`PrepRegion`)*
             :  `PrepEndif`

:token:`PrepRegion` may occur anywhere in a TD file, as long as it matches
the grammar specification.

:token:`PrepDefine` allows defining a :token:`MacroName` so that any following
:token:`PrepIfdef` - :token:`PrepElse` preprocessing region part and
:token:`PrepIfdef` - :token:`PrepEndif` preprocessing region
are enabled for TableGen tokens parsing.

A preprocessing region, starting (i.e. having its :token:`PrepIfdef`) in a file,
must end (i.e. have its :token:`PrepEndif`) in the same file.

A :token:`MacroName` may be defined externally by using ``{ -D<NAME> }``
option of TableGen.