reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
//===-- LanaiInstrInfo.td - Target Description for Lanai Target -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the Lanai instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "LanaiInstrFormats.td"

// -------------------------------------------------- //
// Instruction Operands and Patterns
// -------------------------------------------------- //

//  These are target-independent nodes, but have target-specific formats.
def SDT_LanaiCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
                                            SDTCisVT<1, i32>]>;
def SDT_LanaiCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
                                          SDTCisVT<1, i32>]>;
def SDT_LanaiCall         : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def SDT_LanaiSetFlag      : SDTypeProfile<0,  2, [SDTCisSameAs<0, 1>]>;
def SDT_LanaiSelectCC     : SDTypeProfile<1,  3, [SDTCisSameAs<0, 1>,
                                                  SDTCisSameAs<1, 2>]>;
def SDT_LanaiSetCC        : SDTypeProfile<1,  1, [SDTCisVT<0, i32>,
                                                  SDTCisVT<1, i32>]>;
def SDT_LanaiBrCC         : SDTypeProfile<0,  2, [SDTCisVT<0, OtherVT>,
                                                  SDTCisVT<1, i32>]>;
def SDT_LanaiAdjDynAlloc  : SDTypeProfile<1,  1, [SDTCisVT<0, i32>,
                                                  SDTCisVT<1, i32>]>;

def Call             : SDNode<"LanaiISD::CALL", SDT_LanaiCall,
                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                               SDNPVariadic]>;
def RetFlag          : SDNode<"LanaiISD::RET_FLAG", SDTNone,
                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def CallSeqStart     : SDNode<"ISD::CALLSEQ_START", SDT_LanaiCallSeqStart,
                              [SDNPHasChain, SDNPOutGlue]>;
def CallSeqEnd       : SDNode<"ISD::CALLSEQ_END", SDT_LanaiCallSeqEnd,
                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def LanaiSetFlag     : SDNode<"LanaiISD::SET_FLAG", SDT_LanaiSetFlag,
                              [SDNPOutGlue]>;
def LanaiSubbF       : SDNode<"LanaiISD::SUBBF", SDT_LanaiSetFlag,
                              [SDNPOutGlue, SDNPInGlue]>;
def LanaiBrCC        : SDNode<"LanaiISD::BR_CC", SDT_LanaiBrCC,
                              [SDNPHasChain, SDNPInGlue]>;
def LanaiSelectCC    : SDNode<"LanaiISD::SELECT_CC", SDT_LanaiSelectCC,
                              [SDNPInGlue]>;
def LanaiSetCC       : SDNode<"LanaiISD::SETCC", SDT_LanaiSetCC,
                              [SDNPInGlue]>;
def LanaiHi          : SDNode<"LanaiISD::HI", SDTIntUnaryOp>;
def LanaiLo          : SDNode<"LanaiISD::LO", SDTIntUnaryOp>;
def LanaiSmall       : SDNode<"LanaiISD::SMALL", SDTIntUnaryOp>;
def LanaiAdjDynAlloc : SDNode<"LanaiISD::ADJDYNALLOC", SDT_LanaiAdjDynAlloc>;

// Extract bits 0-15 (low-end) of an immediate value.
def LO16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() & 0xffff,
                                   SDLoc(N), MVT::i32);
}]>;

// Extract bits 16-31 (high-end) of an immediate value.
// Transformation function: shift the immediate value down into the low bits.
def HI16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() >> 16, SDLoc(N),
                                   MVT::i32);
}]>;

def NEG : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;

def LO21 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() & 0x1fffff,
                                   SDLoc(N), MVT::i32);
}]>;

// Branch targets
def BrTargetAsmOperand : AsmOperandClass {
  let Name = "BrTarget";
}
def BrTarget   : Operand<OtherVT> {
  let ParserMatchClass = BrTargetAsmOperand;
  let EncoderMethod = "getBranchTargetOpValue";
  let DecoderMethod = "decodeBranch";
}

def CallTargetAsmOperand : AsmOperandClass {
  let Name = "CallTarget";
}
def CallTarget : Operand<i32> {
  let ParserMatchClass = CallTargetAsmOperand;
  let EncoderMethod = "getBranchTargetOpValue";
  let DecoderMethod = "decodeBranch";
}

def ImmShiftAsmOperand : AsmOperandClass { let Name = "ImmShift"; }
def immShift : Operand<i32>, PatLeaf<(imm), [{
    int Imm = N->getSExtValue();
    return Imm >= -31 && Imm <= 31;}]> {
  let ParserMatchClass = ImmShiftAsmOperand;
  let DecoderMethod = "decodeShiftImm";
}

def Imm10AsmOperand : AsmOperandClass { let Name = "Imm10"; }
def imm10 : Operand<i32>, PatLeaf<(imm), [{
    return isInt<10>(N->getSExtValue()); }]> {
  let ParserMatchClass = Imm10AsmOperand;
}

def LoImm16AsmOperand : AsmOperandClass { let Name = "LoImm16"; }
def i32lo16z : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has only rightmost 16
    // bits set.
    return ((N->getZExtValue() & 0xFFFFUL) == N->getZExtValue());}], LO16> {
  let ParserMatchClass = LoImm16AsmOperand;
}
def i32neg16 : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32neg16 predicate - true if the 32-bit immediate is negative and can
    // be represented by a 16 bit integer.
    int Imm = N->getSExtValue();
    return (Imm < 0) && (isInt<16>(Imm));}], LO16> {
  let ParserMatchClass = LoImm16AsmOperand;
}
def i32lo16s : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has only rightmost 16
    // bits set.
    return ((int64_t)(N->getSExtValue() & 0xFFFFUL) == N->getSExtValue());}], LO16> {
  let ParserMatchClass = LoImm16AsmOperand;
}

def LoImm16AndAsmOperand : AsmOperandClass { let Name = "LoImm16And"; }
def i32lo16and : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has the rightmost 16
    // bits set and the leftmost 16 bits 1's.
    return (N->getZExtValue() >= 0xFFFF0000UL);}], LO16> {
  let ParserMatchClass = LoImm16AndAsmOperand;
  let PrintMethod = "printLo16AndImmOperand";
}

def HiImm16AsmOperand : AsmOperandClass { let Name = "HiImm16"; }
def i32hi16 : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32hi16 predicate - true if the 32-bit immediate has only leftmost 16
    // bits set.
    return ((N->getZExtValue() & 0xFFFF0000UL) == N->getZExtValue());}], HI16> {
  let ParserMatchClass = HiImm16AsmOperand;
  let PrintMethod = "printHi16ImmOperand";
}

def HiImm16AndAsmOperand : AsmOperandClass { let Name = "HiImm16And"; }
def i32hi16and : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has the leftmost 16
    // bits set and the rightmost 16 bits 1's.
    return ((N->getZExtValue() & 0xFFFFUL) == 0xFFFFUL);}], HI16> {
  let ParserMatchClass = HiImm16AndAsmOperand;
  let PrintMethod = "printHi16AndImmOperand";
}

def LoImm21AsmOperand : AsmOperandClass { let Name = "LoImm21"; }
def i32lo21 : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo21 predicate - true if the 32-bit immediate has only rightmost 21
    // bits set.
    return ((N->getZExtValue() & 0x1FFFFFUL) == N->getZExtValue());}], LO21> {
  let ParserMatchClass = LoImm21AsmOperand;
}

def AluOp : Operand<i32> {
  let PrintMethod = "printAluOperand";
}

// Addressing modes.
def ADDRrr : ComplexPattern<i32, 3, "selectAddrRr", [], []>;
def ADDRri : ComplexPattern<i32, 3, "selectAddrRi", [frameindex], []>;
def ADDRsls : ComplexPattern<i32, 1, "selectAddrSls", [frameindex], []>;
def ADDRspls : ComplexPattern<i32, 3, "selectAddrSpls", [frameindex], []>;

// Address operands
def MemRegImmAsmOperand : AsmOperandClass {
  let Name = "MemRegImm";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMri : Operand<i32> {
  let DecoderMethod = "decodeRiMemoryValue";
  let EncoderMethod = "getRiMemoryOpValue";
  let MIOperandInfo = (ops GPR:$base, i32lo16s:$offset, AluOp:$Opcode);
  let ParserMatchClass = MemRegImmAsmOperand;
  let PrintMethod   = "printMemRiOperand";
}

def MemRegRegAsmOperand : AsmOperandClass {
  let Name = "MemRegReg";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMrr : Operand<i32> {
  let DecoderMethod = "decodeRrMemoryValue";
  let EncoderMethod = "getRrMemoryOpValue";
  let MIOperandInfo = (ops GPR:$Op1, GPR:$Op2, AluOp:$Opcode);
  let ParserMatchClass = MemRegRegAsmOperand;
  let PrintMethod   = "printMemRrOperand";
}

def MemImmAsmOperand : AsmOperandClass {
  let Name = "MemImm";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMi : Operand<i32> {
  let MIOperandInfo = (ops i32lo21:$offset);
  let ParserMatchClass = MemImmAsmOperand;
  let PrintMethod   = "printMemImmOperand";
}

def MemSplsAsmOperand : AsmOperandClass {
  let Name = "MemSpls";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMspls : Operand<i32> {
  let DecoderMethod = "decodeSplsValue";
  let EncoderMethod = "getSplsOpValue";
  let MIOperandInfo = (ops GPR:$base, imm10:$offset, AluOp:$Opcode);
  let ParserMatchClass = MemSplsAsmOperand;
  let PrintMethod   = "printMemSplsOperand";
}

def CCOp : Operand<i32> {
  let PrintMethod = "printCCOperand";
}

// Predicate operand. Default to 0 = true.
def CondCodeOperand : AsmOperandClass { let Name = "CondCode"; }

def pred : PredicateOperand<i32, (ops i32imm), (ops (i32 0))> {
  let PrintMethod = "printPredicateOperand";
  let ParserMatchClass = CondCodeOperand;
  let DecoderMethod = "decodePredicateOperand";
}

let hasSideEffects = 0, Inst = 0x00000001 in
  def NOP : InstLanai<(outs), (ins), "nop", []>;

// Special NOPs to change logging level in vlanai.
let hasSideEffects = 0, Inst = 0x00000002 in
  def LOG0 : InstLanai<(outs), (ins), "log_0", []>;
let hasSideEffects = 0, Inst = 0x00000003 in
  def LOG1 : InstLanai<(outs), (ins), "log_1", []>;
let hasSideEffects = 0, Inst = 0x00000004 in
  def LOG2 : InstLanai<(outs), (ins), "log_2", []>;
let hasSideEffects = 0, Inst = 0x00000005 in
  def LOG3 : InstLanai<(outs), (ins), "log_3", []>;
let hasSideEffects = 0, Inst = 0x00000006 in
  def LOG4 : InstLanai<(outs), (ins), "log_4", []>;

// Map an SPLS instruction onto itself. All other instructions will be mapped
// onto -1. Used to identify SPLS instructions.
def splsIdempotent : InstrMapping {
  let FilterClass = "InstSPLS";
  let RowFields = ["AsmString"];
  let ColFields = ["PostEncoderMethod"];
  let KeyCol = ["adjustPqBitsSpls"];
  let ValueCols = [["adjustPqBitsSpls"]];
}

// -------------------------------------------------- //
// ALU instructions
// -------------------------------------------------- //
multiclass ALUbase<bits<3> subOp, string AsmStr, SDNode OpNode,
                   PatLeaf LoExt, PatLeaf HiExt,
                   list<dag> loPattern, list<dag> hiPattern> {
  // Register Immediate
  let H = 0 in
    def LO : InstRI<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, LoExt:$imm16),
                    !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"),
                    loPattern>;
  let H = 1 in
    def HI : InstRI<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, HiExt:$imm16),
                    !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"),
                    hiPattern>;

}

multiclass ALUarith<bits<3> subOp, string AsmStr, SDNode OpNode,
                    PatLeaf LoExt, PatLeaf HiExt> {
  defm I_ : ALUbase<subOp, AsmStr, OpNode, LoExt, HiExt, [], []>;

  // Register Register
  let JJJJJ = 0 in
    def R : InstRR<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI),
                   !strconcat(AsmStr, "$DDDI\t$Rs1, $Rs2, $Rd"),
                   [(set GPR:$Rd, (OpNode GPR:$Rs1, GPR:$Rs2))]>;
}

multiclass ALUlogic<bits<3> subOp, string AsmStr, SDNode OpNode,
                    PatLeaf LoExt, PatLeaf HiExt> {
  defm I_ : ALUbase<subOp, AsmStr, OpNode, LoExt, HiExt,
                    [(set GPR:$Rd, (OpNode GPR:$Rs1, LoExt:$imm16))],
                    [(set GPR:$Rd, (OpNode GPR:$Rs1, HiExt:$imm16))]>;

  // Register Register
  let JJJJJ = 0 in
    def R : InstRR<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI),
                   !strconcat(AsmStr, "$DDDI\t$Rs1, $Rs2, $Rd"),
                   [(set GPR:$Rd, (OpNode GPR:$Rs1, GPR:$Rs2))]>;
}

// Non flag setting ALU operations
let isAsCheapAsAMove = 1, F = 0 in {
  let isCommutable = 1 in {
    defm ADD_ : ALUarith<0b000, "add", add, i32lo16z, i32hi16>;
  }
  defm SUB_ : ALUarith<0b010,   "sub", sub, i32lo16z, i32hi16>;
  let isCommutable = 1 in {
    defm AND_ : ALUlogic<0b100, "and", and, i32lo16and, i32hi16and>;
    defm OR_  : ALUlogic<0b101,  "or",  or, i32lo16z, i32hi16>;
    defm XOR_ : ALUlogic<0b110, "xor", xor, i32lo16z, i32hi16>;
  }
}

def : Pat<(add GPR:$Rs1, i32lo16z:$imm),
          (ADD_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(sub GPR:$Rs1, i32lo16z:$imm),
          (SUB_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(add GPR:$Rs1, i32hi16:$imm),
          (ADD_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(sub GPR:$Rs1, i32hi16:$imm),
          (SUB_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(i32 i32lo16and:$imm), (AND_I_LO (i32 R1), i32lo16and:$imm)>;
def : Pat<(i32 i32hi16and:$imm), (AND_I_HI (i32 R1), i32hi16and:$imm)>;

// Change add/sub with negative number to sub/add
def : Pat<(add GPR:$Rs1, i32neg16:$imm),
          (SUB_I_LO GPR:$Rs1, (NEG $imm))>;
def : Pat<(sub GPR:$Rs1, i32neg16:$imm),
          (ADD_I_LO GPR:$Rs1, (NEG $imm))>;

// Flag (incl. carry) setting addition and subtraction
let F = 1, Defs = [SR] in {
  defm ADD_F_ : ALUarith<0b000, "add.f", addc, i32lo16z, i32hi16>;
  defm SUB_F_ : ALUarith<0b010, "sub.f", subc, i32lo16z, i32hi16>;
}

def : Pat<(addc GPR:$Rs1, i32lo16z:$imm),
          (ADD_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(subc GPR:$Rs1, i32lo16z:$imm),
          (SUB_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(addc GPR:$Rs1, i32hi16:$imm),
          (ADD_F_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(subc GPR:$Rs1, i32hi16:$imm),
          (SUB_F_I_HI GPR:$Rs1, i32hi16:$imm)>;

// Carry using addition and subtraction
let F = 0, Uses = [SR] in {
  defm ADDC_ : ALUarith<0b001, "addc", adde, i32lo16z, i32hi16>;
  defm SUBB_ : ALUarith<0b011, "subb", sube, i32lo16z, i32hi16>;
}

def : Pat<(adde GPR:$Rs1, i32lo16z:$imm),
          (ADDC_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(sube GPR:$Rs1, i32lo16z:$imm),
          (SUBB_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(adde GPR:$Rs1, i32hi16:$imm),
          (ADDC_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(sube GPR:$Rs1, i32hi16:$imm),
          (SUBB_I_HI GPR:$Rs1, i32hi16:$imm)>;

// Flag setting ALU operations
let isAsCheapAsAMove = 1, F = 1, Defs = [SR] in {
  let isCommutable = 1 in {
    defm AND_F_ : ALUlogic<0b100, "and.f",  and, i32lo16and, i32hi16and>;
    defm OR_F_  : ALUlogic<0b101,  "or.f",   or, i32lo16z, i32hi16>;
    defm XOR_F_ : ALUlogic<0b110, "xor.f",  xor, i32lo16z, i32hi16>;
  }
}

let isAsCheapAsAMove = 1, F = 1, Defs = [SR], Uses = [SR] in {
  defm ADDC_F_ : ALUarith<0b001, "addc.f", adde, i32lo16z, i32hi16>;
  defm SUBB_F_ : ALUarith<0b011, "subb.f", sube, i32lo16z, i32hi16>;
}

def : Pat<(LanaiSubbF GPR:$Rs1, GPR:$Rs2),
          (SUBB_F_R GPR:$Rs1, GPR:$Rs2)>;

def : Pat<(LanaiSubbF GPR:$Rs1, i32lo16z:$imm),
          (SUBB_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(LanaiSubbF GPR:$Rs1, i32hi16:$imm),
          (SUBB_F_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : InstAlias<"mov $src, $dst", (ADD_R GPR:$dst, GPR:$src, R0, 0)>;

let isAsCheapAsAMove = 1, Rs1 = R0.Num, isCodeGenOnly = 1, H = 1, F = 0,
  isReMaterializable = 1 in
  def MOVHI : InstRI<0b000, (outs GPR:$Rd), (ins i32hi16:$imm16),
                     "mov\t$imm16, $Rd",
                     [(set GPR:$Rd, i32hi16:$imm16)]>;

def : InstAlias<"mov $imm16, $dst", (ADD_I_LO GPR:$dst, R0, i32lo16z:$imm16)>;
def : InstAlias<"mov $imm16, $dst", (ADD_I_HI GPR:$dst, R0, i32hi16:$imm16)>;
def : InstAlias<"mov $imm16, $dst",
                (AND_I_LO GPR:$dst, R1, i32lo16and:$imm16)>;
def : InstAlias<"mov $imm16, $dst",
                (AND_I_HI GPR:$dst, R1, i32hi16and:$imm16)>;

// Shift instructions
class ShiftRI<string AsmStr, list<dag> Pattern>
  : InstRI<0b111, (outs GPR:$Rd), (ins GPR:$Rs1, immShift:$imm16),
           !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"), Pattern> {
  let isReMaterializable = 1;
}

let F = 0 in {
  let H = 0 in
    def SL_I : ShiftRI<"sh", [(set GPR:$Rd, (shl GPR:$Rs1, immShift:$imm16))]>;
  let H = 1 in
    def SA_I : ShiftRI<"sha", []>;
}
def : Pat<(srl GPR:$Rs1, immShift:$imm), (SL_I GPR:$Rs1, (NEG $imm))>;
def : Pat<(sra GPR:$Rs1, immShift:$imm), (SA_I GPR:$Rs1, (NEG $imm))>;

let F = 1, Defs = [SR] in {
  let H = 0 in
    def SL_F_I : ShiftRI<"sh.f", []>;
  let H = 1 in
    def SA_F_I : ShiftRI<"sha.f", []>;
}

class ShiftRR<string AsmStr, list<dag> Pattern>
  : InstRR<0b111, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI), AsmStr,
           Pattern>;

let F = 0 in {
  let JJJJJ = 0b10000 in
    def SHL_R : ShiftRR<"sh$DDDI\t$Rs1, $Rs2, $Rd",
                        [(set GPR:$Rd, (shl GPR:$Rs1, GPR:$Rs2))]>;
  let isCodeGenOnly = 1 in {
    let JJJJJ = 0b10000 in
      def SRL_R : ShiftRR<"sh$DDDI\t$Rs1, $Rs2, $Rd", []>;
  }
  let JJJJJ = 0b11000 in
    def SRA_R : ShiftRR<"sha$DDDI\t$Rs1, $Rs2, $Rd", []>;
}

let F = 1, Defs = [SR] in {
  let JJJJJ = 0b10000 in
    def SHL_F_R : ShiftRR<"sh.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
  let isCodeGenOnly = 1 in {
    let JJJJJ = 0b10000 in
      def SRL_F_R : ShiftRR<"sh.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
  }
  let JJJJJ = 0b11000 in
    def SRA_F_R : ShiftRR<"sha.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
}

// Expand shift-right operations
def : Pat<(srl GPR:$Rs1, GPR:$Rs2),
          (SRL_R GPR:$Rs1, (SUB_R R0, GPR:$Rs2))>;
def : Pat<(sra GPR:$Rs1, GPR:$Rs2),
          (SRA_R GPR:$Rs1, (SUB_R R0, GPR:$Rs2))>;

// -------------------------------------------------- //
// LOAD instructions
// -------------------------------------------------- //

class LoadRR<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRRM<0b0, (outs GPR:$Rd), (ins MEMrr:$src),
            !strconcat(OpcString, "\t$src, $Rd"),
            [(set (Ty GPR:$Rd), (OpNode ADDRrr:$src))]>,
    Sched<[WriteLD]> {
  bits<20> src;

  let Rs1 = src{19-15};
  let Rs2 = src{14-10};
  let P = src{9};
  let Q = src{8};
  let BBB = src{7-5};
  let JJJJJ = src{4-0};
  let mayLoad = 1;
}

class LoadRI<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRM<0b0, (outs GPR:$Rd), (ins MEMri:$src),
           !strconcat(OpcString, "\t$src, $Rd"),
           [(set (Ty GPR:$Rd), (OpNode ADDRri:$src))]>,
    Sched<[WriteLD]> {
  bits<23> src;

  let Itinerary = IIC_LD;
  let Rs1 = src{22-18};
  let P = src{17};
  let Q = src{16};
  let imm16 = src{15-0};
  let isReMaterializable = 1;
  let mayLoad = 1;
}

let E = 0 in {
  let YL = 0b01 in {
    // uld is used here and ld in the alias as the alias is printed out first if
    // an alias exist
    def LDW_RI : LoadRI<"uld", load, i32>;
    def LDW_RR : LoadRR<"ld", load, i32>;
  }
}

def : InstAlias<"ld $src, $dst", (LDW_RI GPR:$dst, MEMri:$src)>;

let E = 1 in {
  let YL = 0b01 in {
    def LDWz_RR : LoadRR<"uld", zextloadi32, i32>;
  }
}

let E = 1 in {
  let YL = 0b00 in
    def LDHz_RR : LoadRR<"uld.h", zextloadi16, i32>;
  let YL = 0b10 in
    def LDBz_RR : LoadRR<"uld.b", zextloadi8, i32>;
}

let E = 0 in {
  let YL = 0b00 in
    def LDHs_RR : LoadRR<"ld.h", sextloadi16, i32>;
  let YL = 0b10 in
    def LDBs_RR : LoadRR<"ld.b", sextloadi8, i32>;
}

def LDADDR : InstSLS<0x0, (outs GPR:$Rd), (ins MEMi:$src),
                     "ld\t$src, $Rd",
                     [(set (i32 GPR:$Rd), (load ADDRsls:$src))]>,
    Sched<[WriteLD]> {
  bits<21> src;

  let Itinerary = IIC_LD;
  let msb = src{20-16};
  let lsb = src{15-0};
  let isReMaterializable = 1;
  let mayLoad = 1;
}

class LoadSPLS<string asmstring, PatFrag opNode>
  : InstSPLS<(outs GPR:$Rd), (ins MEMspls:$src),
             !strconcat(asmstring, "\t$src, $Rd"),
             [(set (i32 GPR:$Rd), (opNode ADDRspls:$src))]>,
    Sched<[WriteLDSW]> {
  bits<17> src;
  let Itinerary = IIC_LDSW;
  let Rs1 = src{16-12};
  let P = src{11};
  let Q = src{10};
  let imm10 = src{9-0};
  let mayLoad = 1;
  let isReMaterializable = 1;
}

let Y = 0, S = 0, E = 1 in
  def LDHz_RI : LoadSPLS<"uld.h", zextloadi16>;

let Y = 0, S = 0, E = 0 in
  def LDHs_RI : LoadSPLS<"ld.h", sextloadi16>;

let Y = 1, S = 0, E = 1 in
  def LDBz_RI : LoadSPLS<"uld.b", zextloadi8>;

let Y = 1, S = 0, E = 0 in
  def LDBs_RI : LoadSPLS<"ld.b", sextloadi8>;

def SLI : InstSLI<(outs GPR:$Rd), (ins i32lo21:$imm),
                  "mov\t$imm, $Rd",
                  [(set GPR:$Rd, i32lo21:$imm)]> {
  bits<21> imm;

  let msb = imm{20-16};
  let lsb = imm{15-0};
  let isReMaterializable = 1;
  let isAsCheapAsAMove = 1;
}

// -------------------------------------------------- //
// STORE instructions
// -------------------------------------------------- //

class StoreRR<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRRM<0b1, (outs), (ins GPR:$Rd, MEMrr:$dst),
            !strconcat(OpcString, "\t$Rd, $dst"),
            [(OpNode (Ty GPR:$Rd), ADDRrr:$dst)]>,
    Sched<[WriteST]> {
  bits<20> dst;

  let Itinerary = IIC_ST;
  let Rs1 = dst{19-15};
  let Rs2 = dst{14-10};
  let P = dst{9};
  let Q = dst{8};
  let BBB = dst{7-5};
  let JJJJJ = dst{4-0};
  let mayStore = 1;
}

class StoreRI<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRM<0b1, (outs), (ins GPR:$Rd, MEMri:$dst),
           !strconcat(OpcString, "\t$Rd, $dst"),
           [(OpNode (Ty GPR:$Rd), ADDRri:$dst)]>,
    Sched<[WriteST]> {
  bits<23> dst;

  let Itinerary = IIC_ST;
  let Rs1 = dst{22-18};
  let P = dst{17};
  let Q = dst{16};
  let imm16 = dst{15-0};
  let mayStore = 1;
}

let YL = 0b01, E = 0 in {
  def SW_RR : StoreRR<"st", store, i32>;
  def SW_RI : StoreRI<"st", store, i32>;
}

let E = 0 in {
  let YL = 0b00 in
    def STH_RR : StoreRR<"st.h", truncstorei16, i32>;
  let YL = 0b10 in
    def STB_RR : StoreRR<"st.b", truncstorei8, i32>;
}

def STADDR : InstSLS<0x1, (outs), (ins GPR:$Rd, MEMi:$dst),
                     "st\t$Rd, $dst",
                     [(store (i32 GPR:$Rd), ADDRsls:$dst)]>,
    Sched<[WriteST]> {
  bits<21> dst;

  let Itinerary = IIC_ST;
  let msb = dst{20-16};
  let lsb = dst{15-0};
  let mayStore = 1;
}

class StoreSPLS<string asmstring, PatFrag opNode>
  : InstSPLS<(outs), (ins GPR:$Rd, MEMspls:$dst),
             !strconcat(asmstring, "\t$Rd, $dst"),
             [(opNode (i32 GPR:$Rd), ADDRspls:$dst)]>,
    Sched<[WriteSTSW]> {
  bits<17> dst;

  let Itinerary = IIC_STSW;
  let Rs1 = dst{16-12};
  let P = dst{11};
  let Q = dst{10};
  let imm10 = dst{9-0};
  let mayStore = 1;
}

let Y = 0, S = 1, E = 0 in
  def STH_RI : StoreSPLS<"st.h", truncstorei16>;

let Y = 1, S = 1, E = 0 in
  def STB_RI : StoreSPLS<"st.b", truncstorei8>;

// -------------------------------------------------- //
// BRANCH instructions
// -------------------------------------------------- //

let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1 in {
  def BT : InstBR<(outs), (ins BrTarget:$addr),
                  "bt\t$addr",
                  [(br bb:$addr)]> {
    let DDDI = 0b0000;
  }
  let Uses = [SR] in
    def BRCC : InstBR<(outs), (ins BrTarget:$addr, CCOp:$DDDI),
                      "b$DDDI\t$addr",
                      [(LanaiBrCC bb:$addr, imm:$DDDI)]>;

  let isIndirectBranch = 1 in {
    def JR : InstRR<0b101, (outs), (ins GPR:$Rs2), "bt\t$Rs2",
                    [(brind GPR:$Rs2)]> {
      let Rs1 = R0.Num;
      let Rd = R2.Num;
      let F = 0;
      let JJJJJ = 0;
      let DDDI = 0;
    }
  }
}

// -------------------------------------------------- //
// Condition/SF instructions
// -------------------------------------------------- //

// Instructions to set flags used in lowering comparisons.
multiclass SF<bits<3> op2Val, string AsmStr> {
  let F = 1, Rd = R0.Num, JJJJJ = 0, Defs = [SR], DDDI = 0 in
    def _RR : InstRR<op2Val, (outs), (ins GPR:$Rs1, GPR:$Rs2),
                     !strconcat(AsmStr, "\t$Rs1, $Rs2, %r0"),
                     [(LanaiSetFlag (i32 GPR:$Rs1), (i32 GPR:$Rs2))]>;
  let F = 1, Rd = R0.Num, H = 0, Defs = [SR] in
    def _RI_LO : InstRI<op2Val, (outs), (ins GPR:$Rs1, i32lo16z:$imm16),
                     !strconcat(AsmStr, "\t$Rs1, $imm16, %r0"),
                     [(LanaiSetFlag (i32 GPR:$Rs1), i32lo16z:$imm16)]>;
  let F = 1, Rd = R0.Num, H = 1, Defs = [SR] in
    def _RI_HI : InstRI<op2Val, (outs), (ins GPR:$Rs1, i32hi16:$imm16),
                     !strconcat(AsmStr, "\t$Rs1, $imm16, %r0"),
                     [(LanaiSetFlag (i32 GPR:$Rs1), i32hi16:$imm16)]>;
}
let isCodeGenOnly = 1, isCompare = 1 in {
  defm SFSUB_F : SF<0b010, "sub.f">;
}

// Jump and link
let isCall = 1, hasDelaySlot = 1, isCodeGenOnly = 1, Uses = [SP],
    Defs = [RCA] in {
  def CALL : Pseudo<(outs), (ins CallTarget:$addr), "", []>;
  def CALLR : Pseudo<(outs), (ins GPR:$Rs1), "", [(Call GPR:$Rs1)]>;
}

let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    Uses = [RCA] in {
  def RET : InstRM<0b0, (outs), (ins),
                   "ld\t-4[%fp], %pc ! return",
                   [(RetFlag)]> {
    let Rd = PC.Num;
    let Rs1 = FP.Num;
    let P = 1;
    let Q = 0;
    let imm16 = -4;

    // Post encoding is not needed for RET.
    let PostEncoderMethod = "";
  }
}

// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber SP.
let Defs = [SP], Uses = [SP] in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                                "#ADJCALLSTACKDOWN $amt1 $amt2",
                                [(CallSeqStart timm:$amt1, timm:$amt2)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                                "#ADJCALLSTACKUP $amt1 $amt2",
                                [(CallSeqEnd timm:$amt1, timm:$amt2)]>;
}

let Defs = [SP], Uses = [SP] in {
  def ADJDYNALLOC : Pseudo<(outs GPR:$dst), (ins GPR:$src),
                           "#ADJDYNALLOC $dst $src",
                           [(set GPR:$dst, (LanaiAdjDynAlloc GPR:$src))]>;
}

let Uses = [SR] in {
  def SCC : InstSCC<(outs GPR:$Rs1), (ins CCOp:$DDDI),
                    "s$DDDI\t$Rs1",
                    [(set (i32 GPR:$Rs1), (LanaiSetCC imm:$DDDI))]>;
}

// Select with hardware support
let Uses = [SR], isSelect = 1 in {
  def SELECT : InstRR<0b111, (outs GPR:$Rd),
                      (ins GPR:$Rs1, GPR:$Rs2, CCOp:$DDDI),
                      "sel.$DDDI $Rs1, $Rs2, $Rd",
                      [(set (i32 GPR:$Rd),
                       (LanaiSelectCC (i32 GPR:$Rs1), (i32 GPR:$Rs2),
                                      (imm:$DDDI)))]> {
    let JJJJJ = 0;
    let F = 0;
  }
}

let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1,
    isIndirectBranch = 1, Uses = [SR] in {
  def BRIND_CC : InstRR<0b101, (outs), (ins GPR:$Rs1, CCOp:$DDDI),
                        "b$DDDI\t$Rs1", []> {
    let F = 0;
    let JJJJJ = 0;
    let Rd = PC.Num;
    let Rs2 = R0.Num;
  }

  def BRIND_CCA : InstRR<0b101, (outs), (ins GPR:$Rs1, GPR:$Rs2, CCOp:$DDDI),
                         "b${DDDI}\t$Rs1 add $Rs2", []> {
    let F = 0;
    let Rd = PC.Num;
    let JJJJJ = 0;
  }
}

// TODO: This only considers the case where BROFF is an immediate and not where
// it is a register. Add support for register relative branching.
let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1, Rs1 = 0,
    Uses = [SR] in
  def BRR : InstBRR<(outs), (ins i16imm:$imm16, CCOp:$DDDI),
                    "b${DDDI}.r\t$imm16", []>;

let F = 0 in {
// Population Count (POPC)
def POPC: InstSpecial<0b001, (outs GPR:$Rd), (ins GPR:$Rs1),
                      "popc\t$Rs1, $Rd",
                      [(set GPR:$Rd, (ctpop GPR:$Rs1))]>;

// Count Leading Zeros (LEADZ)
def LEADZ: InstSpecial<0b010, (outs GPR:$Rd), (ins GPR:$Rs1),
                       "leadz\t$Rs1, $Rd", [(set GPR:$Rd, (ctlz GPR:$Rs1))]>;

// Count Trailing Zeros (TRAILZ)
def TRAILZ : InstSpecial<0b011, (outs GPR:$Rd), (ins GPR:$Rs1),
                         "trailz\t$Rs1, $Rd",
                         [(set GPR:$Rd, (cttz GPR:$Rs1))]>;
}

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// unsigned 16-bit immediate
def : Pat<(i32 i32lo16z:$imm), (OR_I_LO (i32 R0), imm:$imm)>;

// arbitrary immediate
def : Pat<(i32 imm:$imm), (OR_I_LO (MOVHI (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Calls
def : Pat<(Call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
def : Pat<(Call texternalsym:$dst), (CALL texternalsym:$dst)>;

// Loads
def : Pat<(extloadi8  ADDRspls:$src), (i32 (LDBz_RI ADDRspls:$src))>;
def : Pat<(extloadi16 ADDRspls:$src), (i32 (LDHz_RI ADDRspls:$src))>;
// Loads up to 32-bits are already atomic.
// TODO: This is a workaround for a particular failing case and should be
// handled more generally.
def : Pat<(atomic_load_8  ADDRspls:$src), (i32 (LDBz_RI ADDRspls:$src))>;

// GlobalAddress, ExternalSymbol, Jumptable, ConstantPool
def : Pat<(LanaiHi tglobaladdr:$dst), (MOVHI tglobaladdr:$dst)>;
def : Pat<(LanaiLo tglobaladdr:$dst), (OR_I_LO (i32 R0), tglobaladdr:$dst)>;
def : Pat<(LanaiSmall tglobaladdr:$dst), (SLI tglobaladdr:$dst)>;
def : Pat<(LanaiHi texternalsym:$dst), (MOVHI texternalsym:$dst)>;
def : Pat<(LanaiLo texternalsym:$dst), (OR_I_LO (i32 R0), texternalsym:$dst)>;
def : Pat<(LanaiSmall texternalsym:$dst), (SLI texternalsym:$dst)>;
def : Pat<(LanaiHi tblockaddress:$dst), (MOVHI tblockaddress:$dst)>;
def : Pat<(LanaiLo tblockaddress:$dst), (OR_I_LO (i32 R0), tblockaddress:$dst)>;
def : Pat<(LanaiSmall tblockaddress:$dst), (SLI tblockaddress:$dst)>;
def : Pat<(LanaiHi tjumptable:$dst), (MOVHI tjumptable:$dst)>;
def : Pat<(LanaiLo tjumptable:$dst), (OR_I_LO (i32 R0), tjumptable:$dst)>;
def : Pat<(LanaiSmall tjumptable:$dst), (SLI tjumptable:$dst)>;
def : Pat<(LanaiHi tconstpool:$dst), (MOVHI tconstpool:$dst)>;
def : Pat<(LanaiLo tconstpool:$dst), (OR_I_LO (i32 R0), tconstpool:$dst)>;
def : Pat<(LanaiSmall tconstpool:$dst), (SLI tconstpool:$dst)>;

def : Pat<(or GPR:$hi, (LanaiLo tglobaladdr:$lo)),
          (OR_I_LO GPR:$hi, tglobaladdr:$lo)>;
def : Pat<(or R0, (LanaiSmall tglobaladdr:$small)),
          (SLI tglobaladdr:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo texternalsym:$lo)),
          (OR_I_LO GPR:$hi, texternalsym:$lo)>;
def : Pat<(or R0, (LanaiSmall texternalsym:$small)),
          (SLI texternalsym:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo tblockaddress:$lo)),
          (OR_I_LO GPR:$hi, tblockaddress:$lo)>;
def : Pat<(or R0, (LanaiSmall tblockaddress:$small)),
          (SLI tblockaddress:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo tjumptable:$lo)),
          (OR_I_LO GPR:$hi, tjumptable:$lo)>;
def : Pat<(or R0, (LanaiSmall tjumptable:$small)),
          (SLI tjumptable:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo tconstpool:$lo)),
          (OR_I_LO GPR:$hi, tconstpool:$lo)>;
def : Pat<(or R0, (LanaiSmall tconstpool:$small)),
          (SLI tconstpool:$small)>;