reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Double Precision Multiply
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2

#define BTMP r5:4
#define BTMPH r5
#define BTMPL r4

#define PP_ODD r7:6
#define PP_ODD_H r7
#define PP_ODD_L r6

#define ONE r9:8
#define S_ONE r8
#define S_ZERO r9

#define PP_HH r11:10
#define PP_HH_H r11
#define PP_HH_L r10

#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12

#define PP_LL r15:14
#define PP_LL_H r15
#define PP_LL_L r14

#define TMP r28

#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1024
#define MANTISSA_TO_INT_BIAS 52

// Some constant to adjust normalization amount in error code
// Amount to right shift the partial product to get to a denorm
#define FUDGE 5

#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG

#define SR_ROUND_OFF 22
	.text
	.global __hexagon_muldf3
	.type __hexagon_muldf3,@function
	Q6_ALIAS(muldf3)
  FAST_ALIAS(muldf3)
  FAST2_ALIAS(muldf3)
	.p2align 5
__hexagon_muldf3:
	{
		p0 = dfclass(A,#2)
		p0 = dfclass(B,#2)
		ATMP = combine(##0x40000000,#0)
	}
	{
		ATMP = insert(A,#MANTBITS,#EXPBITS-1)
		BTMP = asl(B,#EXPBITS-1)
		TMP = #-BIAS
		ONE = #1
	}
	{
		PP_ODD = mpyu(BTMPL,ATMPH)
		BTMP = insert(ONE,#2,#62)
	}
	// since we know that the MSB of the H registers is zero, we should never carry
	// H <= 2^31-1.  L <= 2^32-1.  Therefore, HL <= 2^63-2^32-2^31+1
	// Adding 2 HLs, we get 2^64-3*2^32+2 maximum.
	// Therefore, we can add 3 2^32-1 values safely without carry.  We only need one.
	{
		PP_LL = mpyu(ATMPL,BTMPL)
		PP_ODD += mpyu(ATMPL,BTMPH)
	}
	{
		PP_ODD += lsr(PP_LL,#32)
		PP_HH = mpyu(ATMPH,BTMPH)
		BTMP = combine(##BIAS+BIAS-4,#0)
	}
	{
		PP_HH += lsr(PP_ODD,#32)
		if (!p0) jump .Lmul_abnormal
		p1 = cmp.eq(PP_LL_L,#0)		// 64 lsb's 0?
		p1 = cmp.eq(PP_ODD_L,#0)	// 64 lsb's 0?
	}

	// PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts
	// PP_HH can have a minimum of 0x1000_0000_0000_0000 or so

#undef PP_ODD
#undef PP_ODD_H
#undef PP_ODD_L
#define EXP10 r7:6
#define EXP1 r7
#define EXP0 r6
	{
		if (!p1) PP_HH_L = or(PP_HH_L,S_ONE)
		EXP0 = extractu(AH,#EXPBITS,#HI_MANTBITS)
		EXP1 = extractu(BH,#EXPBITS,#HI_MANTBITS)
	}
	{
		PP_LL = neg(PP_HH)
		EXP0 += add(TMP,EXP1)
		TMP = xor(AH,BH)
	}
	{
		if (!p2.new) PP_HH = PP_LL
		p2 = cmp.gt(TMP,#-1)
		p0 = !cmp.gt(EXP0,BTMPH)
		p0 = cmp.gt(EXP0,BTMPL)
		if (!p0.new) jump:nt .Lmul_ovf_unf
	}
	{
		A = convert_d2df(PP_HH)
		EXP0 = add(EXP0,#-BIAS-58)
	}
	{
		AH += asl(EXP0,#HI_MANTBITS)
		jumpr r31
	}

	.falign
.Lpossible_unf:
	// We end up with a positive exponent
	// But we may have rounded up to an exponent of 1.
	// If the exponent is 1, if we rounded up to it
	// we need to also raise underflow
	// Fortunately, this is pretty easy to detect, we must have +/- 0x0010_0000_0000_0000
	// And the PP should also have more than one bit set
	//
	// Note: ATMP should have abs(PP_HH)
	// Note: BTMPL should have 0x7FEFFFFF
	{
		p0 = cmp.eq(AL,#0)
		p0 = bitsclr(AH,BTMPL)
		if (!p0.new) jumpr:t r31
		BTMPH = #0x7fff
	}
	{
		p0 = bitsset(ATMPH,BTMPH)
		BTMPL = USR
		BTMPH = #0x030
	}
	{
		if (p0) BTMPL = or(BTMPL,BTMPH)
	}
	{
		USR = BTMPL
	}
	{
		p0 = dfcmp.eq(A,A)
		jumpr r31
	}
	.falign
.Lmul_ovf_unf:
	{
		A = convert_d2df(PP_HH)
		ATMP = abs(PP_HH)			// take absolute value
		EXP1 = add(EXP0,#-BIAS-58)
	}
	{
		AH += asl(EXP1,#HI_MANTBITS)
		EXP1 = extractu(AH,#EXPBITS,#HI_MANTBITS)
		BTMPL = ##0x7FEFFFFF
	}
	{
		EXP1 += add(EXP0,##-BIAS-58)
		//BTMPH = add(clb(ATMP),#-2)
		BTMPH = #0
	}
	{
		p0 = cmp.gt(EXP1,##BIAS+BIAS-2)	// overflow
		if (p0.new) jump:nt .Lmul_ovf
	}
	{
		p0 = cmp.gt(EXP1,#0)
		if (p0.new) jump:nt .Lpossible_unf
		BTMPH = sub(EXP0,BTMPH)
		TMP = #63				// max amount to shift
	}
	// Underflow
	//
	// PP_HH has the partial product with sticky LSB.
	// PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts
	// PP_HH can have a minimum of 0x1000_0000_0000_0000 or so
	// The exponent of PP_HH is in  EXP1, which is non-positive (0 or negative)
	// That's the exponent that happens after the normalization
	//
	// EXP0 has the exponent that, when added to the normalized value, is out of range.
	//
	// Strategy:
	//
	// * Shift down bits, with sticky bit, such that the bits are aligned according
	//   to the LZ count and appropriate exponent, but not all the way to mantissa
	//   field, keep around the last few bits.
	// * Put a 1 near the MSB
	// * Check the LSBs for inexact; if inexact also set underflow
	// * Convert [u]d2df -- will correctly round according to rounding mode
	// * Replace exponent field with zero

	{
		BTMPL = #0	 			// offset for extract
		BTMPH = sub(#FUDGE,BTMPH)		// amount to right shift
	}
	{
		p3 = cmp.gt(PP_HH_H,#-1)		// is it positive?
		BTMPH = min(BTMPH,TMP)			// Don't shift more than 63
		PP_HH = ATMP
	}
	{
		TMP = USR
		PP_LL = extractu(PP_HH,BTMP)
	}
	{
		PP_HH = asr(PP_HH,BTMPH)
		BTMPL = #0x0030					// underflow flag
		AH = insert(S_ZERO,#EXPBITS,#HI_MANTBITS)
	}
	{
		p0 = cmp.gtu(ONE,PP_LL)				// Did we extract all zeros?
		if (!p0.new) PP_HH_L = or(PP_HH_L,S_ONE)	// add sticky bit
		PP_HH_H = setbit(PP_HH_H,#HI_MANTBITS+3)	// Add back in a bit so we can use convert instruction
	}
	{
		PP_LL = neg(PP_HH)
		p1 = bitsclr(PP_HH_L,#0x7)		// Are the LSB's clear?
		if (!p1.new) TMP = or(BTMPL,TMP)	// If not, Inexact+Underflow
	}
	{
		if (!p3) PP_HH = PP_LL
		USR = TMP
	}
	{
		A = convert_d2df(PP_HH)			// Do rounding
		p0 = dfcmp.eq(A,A)			// realize exception
	}
	{
		AH = insert(S_ZERO,#EXPBITS-1,#HI_MANTBITS+1)		// Insert correct exponent
		jumpr r31
	}
	.falign
.Lmul_ovf:
	// We get either max finite value or infinity.  Either way, overflow+inexact
	{
		TMP = USR
		ATMP = combine(##0x7fefffff,#-1)	// positive max finite
		A = PP_HH
	}
	{
		PP_LL_L = extractu(TMP,#2,#SR_ROUND_OFF)	// rounding bits
		TMP = or(TMP,#0x28)			// inexact + overflow
		BTMP = combine(##0x7ff00000,#0)		// positive infinity
	}
	{
		USR = TMP
		PP_LL_L ^= lsr(AH,#31)			// Does sign match rounding?
		TMP = PP_LL_L				// unmodified rounding mode
	}
	{
		p0 = !cmp.eq(TMP,#1)			// If not round-to-zero and
		p0 = !cmp.eq(PP_LL_L,#2)		// Not rounding the other way,
		if (p0.new) ATMP = BTMP			// we should get infinity
		p0 = dfcmp.eq(A,A)			// Realize FP exception if enabled
	}
	{
		A = insert(ATMP,#63,#0)			// insert inf/maxfinite, leave sign
		jumpr r31
	}

.Lmul_abnormal:
	{
		ATMP = extractu(A,#63,#0)		// strip off sign
		BTMP = extractu(B,#63,#0)		// strip off sign
	}
	{
		p3 = cmp.gtu(ATMP,BTMP)
		if (!p3.new) A = B			// sort values
		if (!p3.new) B = A			// sort values
	}
	{
		// Any NaN --> NaN, possibly raise invalid if sNaN
		p0 = dfclass(A,#0x0f)		// A not NaN?
		if (!p0.new) jump:nt .Linvalid_nan
		if (!p3) ATMP = BTMP
		if (!p3) BTMP = ATMP
	}
	{
		// Infinity * nonzero number is infinity
		p1 = dfclass(A,#0x08)		// A is infinity
		p1 = dfclass(B,#0x0e)		// B is nonzero
	}
	{
		// Infinity * zero --> NaN, raise invalid
		// Other zeros return zero
		p0 = dfclass(A,#0x08)		// A is infinity
		p0 = dfclass(B,#0x01)		// B is zero
	}
	{
		if (p1) jump .Ltrue_inf
		p2 = dfclass(B,#0x01)
	}
	{
		if (p0) jump .Linvalid_zeroinf
		if (p2) jump .Ltrue_zero		// so return zero
		TMP = ##0x7c000000
	}
	// We are left with a normal or subnormal times a subnormal. A > B
	// If A and B are both very small (exp(a) < BIAS-MANTBITS),
	// we go to a single sticky bit, which we can round easily.
	// If A and B might multiply to something bigger, decrease A exponent and increase
	// B exponent and try again
	{
		p0 = bitsclr(AH,TMP)
		if (p0.new) jump:nt .Lmul_tiny
	}
	{
		TMP = cl0(BTMP)
	}
	{
		TMP = add(TMP,#-EXPBITS)
	}
	{
		BTMP = asl(BTMP,TMP)
	}
	{
		B = insert(BTMP,#63,#0)
		AH -= asl(TMP,#HI_MANTBITS)
	}
	jump __hexagon_muldf3
.Lmul_tiny:
	{
		TMP = USR
		A = xor(A,B)				// get sign bit
	}
	{
		TMP = or(TMP,#0x30)			// Inexact + Underflow
		A = insert(ONE,#63,#0)			// put in rounded up value
		BTMPH = extractu(TMP,#2,#SR_ROUND_OFF)	// get rounding mode
	}
	{
		USR = TMP
		p0 = cmp.gt(BTMPH,#1)			// Round towards pos/neg inf?
		if (!p0.new) AL = #0			// If not, zero
		BTMPH ^= lsr(AH,#31)			// rounding my way --> set LSB
	}
	{
		p0 = cmp.eq(BTMPH,#3)			// if rounding towards right inf
		if (!p0.new) AL = #0			// don't go to zero
		jumpr r31
	}
.Linvalid_zeroinf:
	{
		TMP = USR
	}
	{
		A = #-1
		TMP = or(TMP,#2)
	}
	{
		USR = TMP
	}
	{
		p0 = dfcmp.uo(A,A)			// force exception if enabled
		jumpr r31
	}
.Linvalid_nan:
	{
		p0 = dfclass(B,#0x0f)			// if B is not NaN
		TMP = convert_df2sf(A)			// will generate invalid if sNaN
		if (p0.new) B = A 			// make it whatever A is
	}
	{
		BL = convert_df2sf(B)			// will generate invalid if sNaN
		A = #-1
		jumpr r31
	}
	.falign
.Ltrue_zero:
	{
		A = B
		B = A
	}
.Ltrue_inf:
	{
		BH = extract(BH,#1,#31)
	}
	{
		AH ^= asl(BH,#31)
		jumpr r31
	}
END(__hexagon_muldf3)

#undef ATMP
#undef ATMPL
#undef ATMPH
#undef BTMP
#undef BTMPL
#undef BTMPH