1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
| //===-- primary_test.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "primary32.h"
#include "primary64.h"
#include "size_class_map.h"
#include "gtest/gtest.h"
#include <condition_variable>
#include <mutex>
#include <thread>
// Note that with small enough regions, the SizeClassAllocator64 also works on
// 32-bit architectures. It's not something we want to encourage, but we still
// should ensure the tests pass.
template <typename Primary> static void testPrimary() {
const scudo::uptr NumberOfAllocations = 32U;
auto Deleter = [](Primary *P) {
P->unmapTestOnly();
delete P;
};
std::unique_ptr<Primary, decltype(Deleter)> Allocator(new Primary, Deleter);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
for (scudo::uptr I = 0; I <= 16U; I++) {
const scudo::uptr Size = 1UL << I;
if (!Primary::canAllocate(Size))
continue;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *Pointers[NumberOfAllocations];
for (scudo::uptr J = 0; J < NumberOfAllocations; J++) {
void *P = Cache.allocate(ClassId);
memset(P, 'B', Size);
Pointers[J] = P;
}
for (scudo::uptr J = 0; J < NumberOfAllocations; J++)
Cache.deallocate(ClassId, Pointers[J]);
}
Cache.destroy(nullptr);
Allocator->releaseToOS();
scudo::ScopedString Str(1024);
Allocator->getStats(&Str);
Str.output();
}
TEST(ScudoPrimaryTest, BasicPrimary) {
using SizeClassMap = scudo::DefaultSizeClassMap;
testPrimary<scudo::SizeClassAllocator32<SizeClassMap, 18U>>();
testPrimary<scudo::SizeClassAllocator64<SizeClassMap, 24U>>();
}
// The 64-bit SizeClassAllocator can be easily OOM'd with small region sizes.
// For the 32-bit one, it requires actually exhausting memory, so we skip it.
TEST(ScudoPrimaryTest, Primary64OOM) {
using Primary = scudo::SizeClassAllocator64<scudo::DefaultSizeClassMap, 20U>;
using TransferBatch = Primary::CacheT::TransferBatch;
Primary Allocator;
Allocator.init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
scudo::GlobalStats Stats;
Stats.init();
Cache.init(&Stats, &Allocator);
bool AllocationFailed = false;
std::vector<TransferBatch *> Batches;
const scudo::uptr ClassId = Primary::SizeClassMap::LargestClassId;
const scudo::uptr Size = Primary::getSizeByClassId(ClassId);
for (scudo::uptr I = 0; I < 10000U; I++) {
TransferBatch *B = Allocator.popBatch(&Cache, ClassId);
if (!B) {
AllocationFailed = true;
break;
}
for (scudo::uptr J = 0; J < B->getCount(); J++)
memset(B->get(J), 'B', Size);
Batches.push_back(B);
}
while (!Batches.empty()) {
Allocator.pushBatch(ClassId, Batches.back());
Batches.pop_back();
}
Cache.destroy(nullptr);
Allocator.releaseToOS();
scudo::ScopedString Str(1024);
Allocator.getStats(&Str);
Str.output();
EXPECT_EQ(AllocationFailed, true);
Allocator.unmapTestOnly();
}
template <typename Primary> static void testIteratePrimary() {
auto Deleter = [](Primary *P) {
P->unmapTestOnly();
delete P;
};
std::unique_ptr<Primary, decltype(Deleter)> Allocator(new Primary, Deleter);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
std::vector<std::pair<scudo::uptr, void *>> V;
for (scudo::uptr I = 0; I < 64U; I++) {
const scudo::uptr Size = std::rand() % Primary::SizeClassMap::MaxSize;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
V.push_back(std::make_pair(ClassId, P));
}
scudo::uptr Found = 0;
auto Lambda = [V, &Found](scudo::uptr Block) {
for (const auto &Pair : V) {
if (Pair.second == reinterpret_cast<void *>(Block))
Found++;
}
};
Allocator->disable();
Allocator->iterateOverBlocks(Lambda);
Allocator->enable();
EXPECT_EQ(Found, V.size());
while (!V.empty()) {
auto Pair = V.back();
Cache.deallocate(Pair.first, Pair.second);
V.pop_back();
}
Cache.destroy(nullptr);
Allocator->releaseToOS();
scudo::ScopedString Str(1024);
Allocator->getStats(&Str);
Str.output();
}
TEST(ScudoPrimaryTest, PrimaryIterate) {
using SizeClassMap = scudo::DefaultSizeClassMap;
testIteratePrimary<scudo::SizeClassAllocator32<SizeClassMap, 18U>>();
testIteratePrimary<scudo::SizeClassAllocator64<SizeClassMap, 24U>>();
}
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready = false;
template <typename Primary> static void performAllocations(Primary *Allocator) {
static THREADLOCAL typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator);
std::vector<std::pair<scudo::uptr, void *>> V;
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 256U; I++) {
const scudo::uptr Size = std::rand() % Primary::SizeClassMap::MaxSize / 4;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
if (P)
V.push_back(std::make_pair(ClassId, P));
}
while (!V.empty()) {
auto Pair = V.back();
Cache.deallocate(Pair.first, Pair.second);
V.pop_back();
}
Cache.destroy(nullptr);
}
template <typename Primary> static void testPrimaryThreaded() {
auto Deleter = [](Primary *P) {
P->unmapTestOnly();
delete P;
};
std::unique_ptr<Primary, decltype(Deleter)> Allocator(new Primary, Deleter);
Allocator->init(/*ReleaseToOsInterval=*/-1);
std::thread Threads[32];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread(performAllocations<Primary>, Allocator.get());
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
Allocator->releaseToOS();
scudo::ScopedString Str(1024);
Allocator->getStats(&Str);
Str.output();
}
TEST(ScudoPrimaryTest, PrimaryThreaded) {
using SizeClassMap = scudo::SvelteSizeClassMap;
testPrimaryThreaded<scudo::SizeClassAllocator32<SizeClassMap, 18U>>();
testPrimaryThreaded<scudo::SizeClassAllocator64<SizeClassMap, 24U>>();
}
// Through a simple allocation that spans two pages, verify that releaseToOS
// actually releases some bytes (at least one page worth). This is a regression
// test for an error in how the release criteria were computed.
template <typename Primary> static void testReleaseToOS() {
auto Deleter = [](Primary *P) {
P->unmapTestOnly();
delete P;
};
std::unique_ptr<Primary, decltype(Deleter)> Allocator(new Primary, Deleter);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
const scudo::uptr Size = scudo::getPageSizeCached() * 2;
EXPECT_TRUE(Primary::canAllocate(Size));
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
EXPECT_NE(P, nullptr);
Cache.deallocate(ClassId, P);
Cache.destroy(nullptr);
EXPECT_GT(Allocator->releaseToOS(), 0U);
}
TEST(ScudoPrimaryTest, ReleaseToOS) {
using SizeClassMap = scudo::DefaultSizeClassMap;
testReleaseToOS<scudo::SizeClassAllocator32<SizeClassMap, 18U>>();
testReleaseToOS<scudo::SizeClassAllocator64<SizeClassMap, 24U>>();
}
|