reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
//===-- secondary_test.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "secondary.h"

#include "gtest/gtest.h"

#include <stdio.h>

#include <condition_variable>
#include <mutex>
#include <thread>

TEST(ScudoSecondaryTest, SecondaryBasic) {
  scudo::GlobalStats S;
  S.init();
  scudo::MapAllocator *L = new scudo::MapAllocator;
  L->init(&S);
  const scudo::uptr Size = 1U << 16;
  void *P = L->allocate(Size);
  EXPECT_NE(P, nullptr);
  memset(P, 'A', Size);
  EXPECT_GE(scudo::MapAllocator::getBlockSize(P), Size);
  L->deallocate(P);
  EXPECT_DEATH(memset(P, 'A', Size), "");

  const scudo::uptr Align = 1U << 16;
  P = L->allocate(Size + Align, Align);
  EXPECT_NE(P, nullptr);
  void *AlignedP = reinterpret_cast<void *>(
      scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
  memset(AlignedP, 'A', Size);
  L->deallocate(P);

  std::vector<void *> V;
  for (scudo::uptr I = 0; I < 32U; I++)
    V.push_back(L->allocate(Size));
  std::random_shuffle(V.begin(), V.end());
  while (!V.empty()) {
    L->deallocate(V.back());
    V.pop_back();
  }
  scudo::ScopedString Str(1024);
  L->getStats(&Str);
  Str.output();
}

// This exercises a variety of combinations of size and alignment for the
// MapAllocator. The size computation done here mimic the ones done by the
// combined allocator.
TEST(ScudoSecondaryTest, SecondaryCombinations) {
  constexpr scudo::uptr MinAlign = FIRST_32_SECOND_64(8, 16);
  constexpr scudo::uptr HeaderSize = scudo::roundUpTo(8, MinAlign);
  scudo::MapAllocator *L = new scudo::MapAllocator;
  L->init(nullptr);
  for (scudo::uptr SizeLog = 0; SizeLog <= 20; SizeLog++) {
    for (scudo::uptr AlignLog = FIRST_32_SECOND_64(3, 4); AlignLog <= 16;
         AlignLog++) {
      const scudo::uptr Align = 1U << AlignLog;
      for (scudo::sptr Delta = -128; Delta <= 128; Delta += 8) {
        if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
          continue;
        const scudo::uptr UserSize =
            scudo::roundUpTo((1U << SizeLog) + Delta, MinAlign);
        const scudo::uptr Size =
            HeaderSize + UserSize + (Align > MinAlign ? Align - HeaderSize : 0);
        void *P = L->allocate(Size, Align);
        EXPECT_NE(P, nullptr);
        void *AlignedP = reinterpret_cast<void *>(
            scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
        memset(AlignedP, 0xff, UserSize);
        L->deallocate(P);
      }
    }
  }
  scudo::ScopedString Str(1024);
  L->getStats(&Str);
  Str.output();
}

TEST(ScudoSecondaryTest, SecondaryIterate) {
  scudo::MapAllocator *L = new scudo::MapAllocator;
  L->init(nullptr);
  std::vector<void *> V;
  const scudo::uptr PageSize = scudo::getPageSizeCached();
  for (scudo::uptr I = 0; I < 32U; I++)
    V.push_back(L->allocate((std::rand() % 16) * PageSize));
  auto Lambda = [V](scudo::uptr Block) {
    EXPECT_NE(std::find(V.begin(), V.end(), reinterpret_cast<void *>(Block)),
              V.end());
  };
  L->disable();
  L->iterateOverBlocks(Lambda);
  L->enable();
  while (!V.empty()) {
    L->deallocate(V.back());
    V.pop_back();
  }
  scudo::ScopedString Str(1024);
  L->getStats(&Str);
  Str.output();
}

static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready = false;

static void performAllocations(scudo::MapAllocator *L) {
  std::vector<void *> V;
  const scudo::uptr PageSize = scudo::getPageSizeCached();
  {
    std::unique_lock<std::mutex> Lock(Mutex);
    while (!Ready)
      Cv.wait(Lock);
  }
  for (scudo::uptr I = 0; I < 32U; I++)
    V.push_back(L->allocate((std::rand() % 16) * PageSize));
  while (!V.empty()) {
    L->deallocate(V.back());
    V.pop_back();
  }
}

TEST(ScudoSecondaryTest, SecondaryThreadsRace) {
  scudo::MapAllocator *L = new scudo::MapAllocator;
  L->init(nullptr);
  std::thread Threads[10];
  for (scudo::uptr I = 0; I < 10U; I++)
    Threads[I] = std::thread(performAllocations, L);
  {
    std::unique_lock<std::mutex> Lock(Mutex);
    Ready = true;
    Cv.notify_all();
  }
  for (auto &T : Threads)
    T.join();
  scudo::ScopedString Str(1024);
  L->getStats(&Str);
  Str.output();
}