reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
//===-- function_call_trie_test.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include "xray_function_call_trie.h"
#include "gtest/gtest.h"
#include <cstdint>

namespace __xray {

namespace {

TEST(FunctionCallTrieTest, ConstructWithTLSAllocators) {
  profilingFlags()->setDefaults();
  FunctionCallTrie::Allocators Allocators = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(Allocators);
}

TEST(FunctionCallTrieTest, EnterAndExitFunction) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);

  uint64_t TSC = 1;
  uint16_t CPU = 0;
  Trie.enterFunction(1, TSC++, CPU++);
  Trie.exitFunction(1, TSC++, CPU++);
  const auto &R = Trie.getRoots();

  ASSERT_EQ(R.size(), 1u);
  ASSERT_EQ(R.front()->FId, 1);
  ASSERT_EQ(R.front()->CallCount, 1u);
  ASSERT_EQ(R.front()->CumulativeLocalTime, 1u);
}

TEST(FunctionCallTrieTest, HandleTSCOverflow) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);

  Trie.enterFunction(1, std::numeric_limits<uint64_t>::max(), 0);
  Trie.exitFunction(1, 1, 0);
  const auto &R = Trie.getRoots();

  ASSERT_EQ(R.size(), 1u);
  ASSERT_EQ(R.front()->FId, 1);
  ASSERT_EQ(R.front()->CallCount, 1u);
  ASSERT_EQ(R.front()->CumulativeLocalTime, 1u);
}

TEST(FunctionCallTrieTest, MaximalCumulativeTime) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);

  Trie.enterFunction(1, 1, 0);
  Trie.exitFunction(1, 0, 0);
  const auto &R = Trie.getRoots();

  ASSERT_EQ(R.size(), 1u);
  ASSERT_EQ(R.front()->FId, 1);
  ASSERT_EQ(R.front()->CallCount, 1u);
  ASSERT_EQ(R.front()->CumulativeLocalTime,
            std::numeric_limits<uint64_t>::max() - 1);
}

TEST(FunctionCallTrieTest, MissingFunctionEntry) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);
  Trie.exitFunction(1, 1, 0);
  const auto &R = Trie.getRoots();

  ASSERT_TRUE(R.empty());
}

TEST(FunctionCallTrieTest, NoMatchingEntersForExit) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);
  Trie.enterFunction(2, 1, 0);
  Trie.enterFunction(3, 3, 0);
  Trie.exitFunction(1, 5, 0);
  const auto &R = Trie.getRoots();

  ASSERT_FALSE(R.empty());
  EXPECT_EQ(R.size(), size_t{1});
}

TEST(FunctionCallTrieTest, MissingFunctionExit) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);
  Trie.enterFunction(1, 1, 0);
  const auto &R = Trie.getRoots();

  ASSERT_FALSE(R.empty());
  EXPECT_EQ(R.size(), size_t{1});
}

TEST(FunctionCallTrieTest, MultipleRoots) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);

  // Enter and exit FId = 1.
  Trie.enterFunction(1, 1, 0);
  Trie.exitFunction(1, 2, 0);

  // Enter and exit FId = 2.
  Trie.enterFunction(2, 3, 0);
  Trie.exitFunction(2, 4, 0);

  const auto &R = Trie.getRoots();
  ASSERT_FALSE(R.empty());
  ASSERT_EQ(R.size(), 2u);

  // Make sure the roots have different IDs.
  const auto R0 = R[0];
  const auto R1 = R[1];
  ASSERT_NE(R0->FId, R1->FId);

  // Inspect the roots that they have the right data.
  ASSERT_NE(R0, nullptr);
  EXPECT_EQ(R0->CallCount, 1u);
  EXPECT_EQ(R0->CumulativeLocalTime, 1u);

  ASSERT_NE(R1, nullptr);
  EXPECT_EQ(R1->CallCount, 1u);
  EXPECT_EQ(R1->CumulativeLocalTime, 1u);
}

// While missing an intermediary entry may be rare in practice, we still enforce
// that we can handle the case where we've missed the entry event somehow, in
// between call entry/exits. To illustrate, imagine the following shadow call
// stack:
//
//   f0@t0 -> f1@t1 -> f2@t2
//
// If for whatever reason we see an exit for `f2` @ t3, followed by an exit for
// `f0` @ t4 (i.e. no `f1` exit in between) then we need to handle the case of
// accounting local time to `f2` from d = (t3 - t2), then local time to `f1`
// as d' = (t3 - t1) - d, and then local time to `f0` as d'' = (t3 - t0) - d'.
TEST(FunctionCallTrieTest, MissingIntermediaryExit) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);

  Trie.enterFunction(1, 0, 0);
  Trie.enterFunction(2, 100, 0);
  Trie.enterFunction(3, 200, 0);
  Trie.exitFunction(3, 300, 0);
  Trie.exitFunction(1, 400, 0);

  // What we should see at this point is all the functions in the trie in a
  // specific order (1 -> 2 -> 3) with the appropriate count(s) and local
  // latencies.
  const auto &R = Trie.getRoots();
  ASSERT_FALSE(R.empty());
  ASSERT_EQ(R.size(), 1u);

  const auto &F1 = *R[0];
  ASSERT_EQ(F1.FId, 1);
  ASSERT_FALSE(F1.Callees.empty());

  const auto &F2 = *F1.Callees[0].NodePtr;
  ASSERT_EQ(F2.FId, 2);
  ASSERT_FALSE(F2.Callees.empty());

  const auto &F3 = *F2.Callees[0].NodePtr;
  ASSERT_EQ(F3.FId, 3);
  ASSERT_TRUE(F3.Callees.empty());

  // Now that we've established the preconditions, we check for specific aspects
  // of the nodes.
  EXPECT_EQ(F3.CallCount, 1u);
  EXPECT_EQ(F2.CallCount, 1u);
  EXPECT_EQ(F1.CallCount, 1u);
  EXPECT_EQ(F3.CumulativeLocalTime, 100u);
  EXPECT_EQ(F2.CumulativeLocalTime, 300u);
  EXPECT_EQ(F1.CumulativeLocalTime, 100u);
}

TEST(FunctionCallTrieTest, DeepCallStack) {
  // Simulate a relatively deep call stack (32 levels) and ensure that we can
  // properly pop all the way up the stack.
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);
  for (int i = 0; i < 32; ++i)
    Trie.enterFunction(i + 1, i, 0);
  Trie.exitFunction(1, 33, 0);

  // Here, validate that we have a 32-level deep function call path from the
  // root (1) down to the leaf (33).
  const auto &R = Trie.getRoots();
  ASSERT_EQ(R.size(), 1u);
  auto F = R[0];
  for (int i = 0; i < 32; ++i) {
    EXPECT_EQ(F->FId, i + 1);
    EXPECT_EQ(F->CallCount, 1u);
    if (F->Callees.empty() && i != 31)
      FAIL() << "Empty callees for FId " << F->FId;
    if (i != 31)
      F = F->Callees[0].NodePtr;
  }
}

// TODO: Test that we can handle cross-CPU migrations, where TSCs are not
// guaranteed to be synchronised.
TEST(FunctionCallTrieTest, DeepCopy) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Trie(A);

  Trie.enterFunction(1, 0, 0);
  Trie.enterFunction(2, 1, 0);
  Trie.exitFunction(2, 2, 0);
  Trie.enterFunction(3, 3, 0);
  Trie.exitFunction(3, 4, 0);
  Trie.exitFunction(1, 5, 0);

  // We want to make a deep copy and compare notes.
  auto B = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Copy(B);
  Trie.deepCopyInto(Copy);

  ASSERT_NE(Trie.getRoots().size(), 0u);
  ASSERT_EQ(Trie.getRoots().size(), Copy.getRoots().size());
  const auto &R0Orig = *Trie.getRoots()[0];
  const auto &R0Copy = *Copy.getRoots()[0];
  EXPECT_EQ(R0Orig.FId, 1);
  EXPECT_EQ(R0Orig.FId, R0Copy.FId);

  ASSERT_EQ(R0Orig.Callees.size(), 2u);
  ASSERT_EQ(R0Copy.Callees.size(), 2u);

  const auto &F1Orig =
      *R0Orig.Callees
           .find_element(
               [](const FunctionCallTrie::NodeIdPair &R) { return R.FId == 2; })
           ->NodePtr;
  const auto &F1Copy =
      *R0Copy.Callees
           .find_element(
               [](const FunctionCallTrie::NodeIdPair &R) { return R.FId == 2; })
           ->NodePtr;
  EXPECT_EQ(&R0Orig, F1Orig.Parent);
  EXPECT_EQ(&R0Copy, F1Copy.Parent);
}

TEST(FunctionCallTrieTest, MergeInto) {
  profilingFlags()->setDefaults();
  auto A = FunctionCallTrie::InitAllocators();
  FunctionCallTrie T0(A);
  FunctionCallTrie T1(A);

  // 1 -> 2 -> 3
  T0.enterFunction(1, 0, 0);
  T0.enterFunction(2, 1, 0);
  T0.enterFunction(3, 2, 0);
  T0.exitFunction(3, 3, 0);
  T0.exitFunction(2, 4, 0);
  T0.exitFunction(1, 5, 0);

  // 1 -> 2 -> 3
  T1.enterFunction(1, 0, 0);
  T1.enterFunction(2, 1, 0);
  T1.enterFunction(3, 2, 0);
  T1.exitFunction(3, 3, 0);
  T1.exitFunction(2, 4, 0);
  T1.exitFunction(1, 5, 0);

  // We use a different allocator here to make sure that we're able to transfer
  // data into a FunctionCallTrie which uses a different allocator. This
  // reflects the inteded usage scenario for when we're collecting profiles that
  // aggregate across threads.
  auto B = FunctionCallTrie::InitAllocators();
  FunctionCallTrie Merged(B);

  T0.mergeInto(Merged);
  T1.mergeInto(Merged);

  ASSERT_EQ(Merged.getRoots().size(), 1u);
  const auto &R0 = *Merged.getRoots()[0];
  EXPECT_EQ(R0.FId, 1);
  EXPECT_EQ(R0.CallCount, 2u);
  EXPECT_EQ(R0.CumulativeLocalTime, 10u);
  EXPECT_EQ(R0.Callees.size(), 1u);

  const auto &F1 = *R0.Callees[0].NodePtr;
  EXPECT_EQ(F1.FId, 2);
  EXPECT_EQ(F1.CallCount, 2u);
  EXPECT_EQ(F1.CumulativeLocalTime, 6u);
  EXPECT_EQ(F1.Callees.size(), 1u);

  const auto &F2 = *F1.Callees[0].NodePtr;
  EXPECT_EQ(F2.FId, 3);
  EXPECT_EQ(F2.CallCount, 2u);
  EXPECT_EQ(F2.CumulativeLocalTime, 2u);
  EXPECT_EQ(F2.Callees.size(), 0u);
}

TEST(FunctionCallTrieTest, PlacementNewOnAlignedStorage) {
  profilingFlags()->setDefaults();
  typename std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
                                alignof(FunctionCallTrie::Allocators)>::type
      AllocatorsStorage;
  new (&AllocatorsStorage)
      FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
  auto *A =
      reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);

  typename std::aligned_storage<sizeof(FunctionCallTrie),
                                alignof(FunctionCallTrie)>::type FCTStorage;
  new (&FCTStorage) FunctionCallTrie(*A);
  auto *T = reinterpret_cast<FunctionCallTrie *>(&FCTStorage);

  // Put some data into it.
  T->enterFunction(1, 0, 0);
  T->exitFunction(1, 1, 0);

  // Re-initialize the objects in storage.
  T->~FunctionCallTrie();
  A->~Allocators();
  new (A) FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
  new (T) FunctionCallTrie(*A);

  // Then put some data into it again.
  T->enterFunction(1, 0, 0);
  T->exitFunction(1, 1, 0);
}

} // namespace

} // namespace __xray