reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
//===-- profile_collector_test.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"

#include "xray_profile_collector.h"
#include "xray_profiling_flags.h"
#include <cstdint>
#include <cstring>
#include <memory>
#include <thread>
#include <utility>
#include <vector>

namespace __xray {
namespace {

static constexpr auto kHeaderSize = 16u;

constexpr uptr ExpectedProfilingVersion = 0x20180424;

struct ExpectedProfilingFileHeader {
  const u64 MagicBytes = 0x7872617970726f66; // Identifier for XRay profiling
                                             // files 'xrayprof' in hex.
  const u64 Version = ExpectedProfilingVersion;
  u64 Timestamp = 0;
  u64 PID = 0;
};

void ValidateFileHeaderBlock(XRayBuffer B) {
  ASSERT_NE(static_cast<const void *>(B.Data), nullptr);
  ASSERT_EQ(B.Size, sizeof(ExpectedProfilingFileHeader));
  typename std::aligned_storage<sizeof(ExpectedProfilingFileHeader)>::type
      FileHeaderStorage;
  ExpectedProfilingFileHeader ExpectedHeader;
  std::memcpy(&FileHeaderStorage, B.Data, B.Size);
  auto &FileHeader =
      *reinterpret_cast<ExpectedProfilingFileHeader *>(&FileHeaderStorage);
  ASSERT_EQ(ExpectedHeader.MagicBytes, FileHeader.MagicBytes);
  ASSERT_EQ(ExpectedHeader.Version, FileHeader.Version);
}

void ValidateBlock(XRayBuffer B) {
  profilingFlags()->setDefaults();
  ASSERT_NE(static_cast<const void *>(B.Data), nullptr);
  ASSERT_NE(B.Size, 0u);
  ASSERT_GE(B.Size, kHeaderSize);
  // We look at the block size, the block number, and the thread ID to ensure
  // that none of them are zero (or that the header data is laid out as we
  // expect).
  char LocalBuffer[kHeaderSize] = {};
  internal_memcpy(LocalBuffer, B.Data, kHeaderSize);
  u32 BlockSize = 0;
  u32 BlockNumber = 0;
  u64 ThreadId = 0;
  internal_memcpy(&BlockSize, LocalBuffer, sizeof(u32));
  internal_memcpy(&BlockNumber, LocalBuffer + sizeof(u32), sizeof(u32));
  internal_memcpy(&ThreadId, LocalBuffer + (2 * sizeof(u32)), sizeof(u64));
  ASSERT_NE(BlockSize, 0u);
  ASSERT_GE(BlockNumber, 0u);
  ASSERT_NE(ThreadId, 0u);
}

std::tuple<u32, u32, u64> ParseBlockHeader(XRayBuffer B) {
  char LocalBuffer[kHeaderSize] = {};
  internal_memcpy(LocalBuffer, B.Data, kHeaderSize);
  u32 BlockSize = 0;
  u32 BlockNumber = 0;
  u64 ThreadId = 0;
  internal_memcpy(&BlockSize, LocalBuffer, sizeof(u32));
  internal_memcpy(&BlockNumber, LocalBuffer + sizeof(u32), sizeof(u32));
  internal_memcpy(&ThreadId, LocalBuffer + (2 * sizeof(u32)), sizeof(u64));
  return std::make_tuple(BlockSize, BlockNumber, ThreadId);
}

struct Profile {
  int64_t CallCount;
  int64_t CumulativeLocalTime;
  std::vector<int32_t> Path;
};

std::tuple<Profile, const char *> ParseProfile(const char *P) {
  Profile Result;
  // Read the path first, until we find a sentinel 0.
  int32_t F;
  do {
    internal_memcpy(&F, P, sizeof(int32_t));
    P += sizeof(int32_t);
    Result.Path.push_back(F);
  } while (F != 0);

  // Then read the CallCount.
  internal_memcpy(&Result.CallCount, P, sizeof(int64_t));
  P += sizeof(int64_t);

  // Then read the CumulativeLocalTime.
  internal_memcpy(&Result.CumulativeLocalTime, P, sizeof(int64_t));
  P += sizeof(int64_t);
  return std::make_tuple(std::move(Result), P);
}

TEST(profileCollectorServiceTest, PostSerializeCollect) {
  profilingFlags()->setDefaults();
  bool Success = false;
  BufferQueue BQ(profilingFlags()->per_thread_allocator_max,
                 profilingFlags()->buffers_max, Success);
  ASSERT_EQ(Success, true);
  FunctionCallTrie::Allocators::Buffers Buffers;
  ASSERT_EQ(BQ.getBuffer(Buffers.NodeBuffer), BufferQueue::ErrorCode::Ok);
  ASSERT_EQ(BQ.getBuffer(Buffers.RootsBuffer), BufferQueue::ErrorCode::Ok);
  ASSERT_EQ(BQ.getBuffer(Buffers.ShadowStackBuffer),
            BufferQueue::ErrorCode::Ok);
  ASSERT_EQ(BQ.getBuffer(Buffers.NodeIdPairBuffer), BufferQueue::ErrorCode::Ok);
  auto Allocators = FunctionCallTrie::InitAllocatorsFromBuffers(Buffers);
  FunctionCallTrie T(Allocators);

  // Populate the trie with some data.
  T.enterFunction(1, 1, 0);
  T.enterFunction(2, 2, 0);
  T.exitFunction(2, 3, 0);
  T.exitFunction(1, 4, 0);

  // Reset the collector data structures.
  profileCollectorService::reset();

  // Then we post the data to the global profile collector service.
  profileCollectorService::post(&BQ, std::move(T), std::move(Allocators),
                                std::move(Buffers), 1);

  // Then we serialize the data.
  profileCollectorService::serialize();

  // Then we go through two buffers to see whether we're getting the data we
  // expect. The first block must always be as large as a file header, which
  // will have a fixed size.
  auto B = profileCollectorService::nextBuffer({nullptr, 0});
  ValidateFileHeaderBlock(B);

  B = profileCollectorService::nextBuffer(B);
  ValidateBlock(B);
  u32 BlockSize;
  u32 BlockNum;
  u64 ThreadId;
  std::tie(BlockSize, BlockNum, ThreadId) = ParseBlockHeader(B);

  // We look at the serialized buffer to see whether the Trie we're expecting
  // to see is there.
  auto DStart = static_cast<const char *>(B.Data) + kHeaderSize;
  std::vector<char> D(DStart, DStart + BlockSize);
  B = profileCollectorService::nextBuffer(B);
  ASSERT_EQ(B.Data, nullptr);
  ASSERT_EQ(B.Size, 0u);

  Profile Profile1, Profile2;
  auto P = static_cast<const char *>(D.data());
  std::tie(Profile1, P) = ParseProfile(P);
  std::tie(Profile2, P) = ParseProfile(P);

  ASSERT_NE(Profile1.Path.size(), Profile2.Path.size());
  auto &P1 = Profile1.Path.size() < Profile2.Path.size() ? Profile2 : Profile1;
  auto &P2 = Profile1.Path.size() < Profile2.Path.size() ? Profile1 : Profile2;
  std::vector<int32_t> P1Expected = {2, 1, 0};
  std::vector<int32_t> P2Expected = {1, 0};
  ASSERT_EQ(P1.Path.size(), P1Expected.size());
  ASSERT_EQ(P2.Path.size(), P2Expected.size());
  ASSERT_EQ(P1.Path, P1Expected);
  ASSERT_EQ(P2.Path, P2Expected);
}

// We break out a function that will be run in multiple threads, one that will
// use a thread local allocator, and will post the FunctionCallTrie to the
// profileCollectorService. This simulates what the threads being profiled would
// be doing anyway, but through the XRay logging implementation.
void threadProcessing() {
  static bool Success = false;
  static BufferQueue BQ(profilingFlags()->per_thread_allocator_max,
                        profilingFlags()->buffers_max, Success);
  thread_local FunctionCallTrie::Allocators::Buffers Buffers = [] {
    FunctionCallTrie::Allocators::Buffers B;
    BQ.getBuffer(B.NodeBuffer);
    BQ.getBuffer(B.RootsBuffer);
    BQ.getBuffer(B.ShadowStackBuffer);
    BQ.getBuffer(B.NodeIdPairBuffer);
    return B;
  }();

  thread_local auto Allocators =
      FunctionCallTrie::InitAllocatorsFromBuffers(Buffers);

  FunctionCallTrie T(Allocators);

  T.enterFunction(1, 1, 0);
  T.enterFunction(2, 2, 0);
  T.exitFunction(2, 3, 0);
  T.exitFunction(1, 4, 0);

  profileCollectorService::post(&BQ, std::move(T), std::move(Allocators),
                                std::move(Buffers), GetTid());
}

TEST(profileCollectorServiceTest, PostSerializeCollectMultipleThread) {
  profilingFlags()->setDefaults();

  profileCollectorService::reset();

  std::thread t1(threadProcessing);
  std::thread t2(threadProcessing);

  t1.join();
  t2.join();

  // At this point, t1 and t2 are already done with what they were doing.
  profileCollectorService::serialize();

  // Ensure that we see two buffers.
  auto B = profileCollectorService::nextBuffer({nullptr, 0});
  ValidateFileHeaderBlock(B);

  B = profileCollectorService::nextBuffer(B);
  ValidateBlock(B);

  B = profileCollectorService::nextBuffer(B);
  ValidateBlock(B);
}

} // namespace
} // namespace __xray