1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
| // 1) Compile shared code into different object files and into an executable.
// RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %s -c -o %t.v1.o \
// RUN: -D_VERSION_1
// RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %s -c -o %t.v2.o \
// RUN: -D_VERSION_2
// RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %t.v1.o %t.v2.o \
// RUN: -o %t.exe
// 2) Collect profile data.
// RUN: env LLVM_PROFILE_FILE=%t.profraw %run %t.exe
// RUN: llvm-profdata merge %t.profraw -o %t.profdata
// 3) Generate coverage reports from the different object files and the exe.
// RUN: llvm-cov show %t.v1.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V1-ONLY
// RUN: llvm-cov show %t.v2.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V2,V2-ONLY
// RUN: llvm-cov show %t.v1.o -object %t.v2.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V2
// RUN: llvm-cov show %t.exe -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V2
// 4) Verify that coverage reporting on the aggregate coverage mapping shows
// hits for all code. (We used to arbitrarily pick a mapping from one binary
// and prefer it over others.) When only limited coverage information is
// available (just from one binary), don't try to guess any region counts.
struct A {
A() {} // V1: [[@LINE]]{{ *}}|{{ *}}1
// V1-ONLY: [[@LINE+1]]{{ *}}|{{ *}}|
A(int) {} // V2-ONLY: [[@LINE-2]]{{ *}}|{{ *}}|
// V2: [[@LINE-1]]{{ *}}|{{ *}}1
};
#ifdef _VERSION_1
void foo();
void bar() {
A x; // V1: [[@LINE]]{{ *}}|{{ *}}1
}
int main() {
foo(); // V1: [[@LINE]]{{ *}}|{{ *}}1
bar();
return 0;
}
#endif // _VERSION_1
#ifdef _VERSION_2
void foo() {
A x{0}; // V2: [[@LINE]]{{ *}}|{{ *}}1
}
#endif // _VERSION_2
|