reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
#ifndef KMP_STATS_H
#define KMP_STATS_H

/** @file kmp_stats.h
 * Functions for collecting statistics.
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "kmp_config.h"
#include "kmp_debug.h"

#if KMP_STATS_ENABLED
/* Statistics accumulator.
   Accumulates number of samples and computes min, max, mean, standard deviation
   on the fly.

   Online variance calculation algorithm from
   http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm
 */

#include "kmp_stats_timing.h"
#include <limits>
#include <math.h>
#include <new> // placement new
#include <stdint.h>
#include <string>
#include <vector>

/* Enable developer statistics here if you want them. They are more detailed
   than is useful for application characterisation and are intended for the
   runtime library developer. */
#define KMP_DEVELOPER_STATS 0

/* Enable/Disable histogram output */
#define KMP_STATS_HIST 0

/*!
 * @ingroup STATS_GATHERING
 * \brief flags to describe the statistic (timer or counter)
 *
 */
enum stats_flags_e {
  noTotal = 1 << 0, //!< do not show a TOTAL_aggregation for this statistic
  onlyInMaster = 1 << 1, //!< statistic is valid only for master
  noUnits = 1 << 2, //!< statistic doesn't need units printed next to it
  notInMaster = 1 << 3, //!< statistic is valid only for non-master threads
  logEvent = 1 << 4 //!< statistic can be logged on the event timeline when
  //! KMP_STATS_EVENTS is on (valid only for timers)
};

/*!
 * @ingroup STATS_GATHERING
 * \brief the states which a thread can be in
 *
 */
enum stats_state_e {
  IDLE,
  SERIAL_REGION,
  FORK_JOIN_BARRIER,
  PLAIN_BARRIER,
  TASKWAIT,
  TASKYIELD,
  TASKGROUP,
  IMPLICIT_TASK,
  EXPLICIT_TASK,
  TEAMS_REGION
};

/*!
 * \brief Add new counters under KMP_FOREACH_COUNTER() macro in kmp_stats.h
 *
 * @param macro a user defined macro that takes three arguments -
 * macro(COUNTER_NAME, flags, arg)
 * @param arg a user defined argument to send to the user defined macro
 *
 * \details A counter counts the occurrence of some event. Each thread
 * accumulates its own count, at the end of execution the counts are aggregated
 * treating each thread as a separate measurement. (Unless onlyInMaster is set,
 * in which case there's only a single measurement). The min,mean,max are
 * therefore the values for the threads. Adding the counter here and then
 * putting a KMP_BLOCK_COUNTER(name) at the point you want to count is all you
 * need to do. All of the tables and printing is generated from this macro.
 * Format is "macro(name, flags, arg)"
 *
 * @ingroup STATS_GATHERING
 */
// clang-format off
#define KMP_FOREACH_COUNTER(macro, arg)                                        \
  macro(OMP_PARALLEL,stats_flags_e::onlyInMaster|stats_flags_e::noTotal,arg)   \
  macro(OMP_NESTED_PARALLEL, 0, arg)                                           \
  macro(OMP_LOOP_STATIC, 0, arg)                                               \
  macro(OMP_LOOP_STATIC_STEAL, 0, arg)                                         \
  macro(OMP_LOOP_DYNAMIC, 0, arg)                                              \
  macro(OMP_DISTRIBUTE, 0, arg)                                                \
  macro(OMP_BARRIER, 0, arg)                                                   \
  macro(OMP_CRITICAL, 0, arg)                                                  \
  macro(OMP_SINGLE, 0, arg)                                                    \
  macro(OMP_MASTER, 0, arg)                                                    \
  macro(OMP_TEAMS, 0, arg)                                                     \
  macro(OMP_set_lock, 0, arg)                                                  \
  macro(OMP_test_lock, 0, arg)                                                 \
  macro(REDUCE_wait, 0, arg)                                                   \
  macro(REDUCE_nowait, 0, arg)                                                 \
  macro(OMP_TASKYIELD, 0, arg)                                                 \
  macro(OMP_TASKLOOP, 0, arg)                                                  \
  macro(TASK_executed, 0, arg)                                                 \
  macro(TASK_cancelled, 0, arg)                                                \
  macro(TASK_stolen, 0, arg)
// clang-format on

/*!
 * \brief Add new timers under KMP_FOREACH_TIMER() macro in kmp_stats.h
 *
 * @param macro a user defined macro that takes three arguments -
 * macro(TIMER_NAME, flags, arg)
 * @param arg a user defined argument to send to the user defined macro
 *
 * \details A timer collects multiple samples of some count in each thread and
 * then finally aggregates all of the samples from all of the threads. For most
 * timers the printing code also provides an aggregation over the thread totals.
 * These are printed as TOTAL_foo. The count is normally a time (in ticks),
 * hence the name "timer". (But can be any value, so we use this for "number of
 * arguments passed to fork" as well). For timers the threads are not
 * significant, it's the individual observations that count, so the statistics
 * are at that level. Format is "macro(name, flags, arg)"
 *
 * @ingroup STATS_GATHERING2
 */
// clang-format off
#define KMP_FOREACH_TIMER(macro, arg)                                          \
  macro (OMP_worker_thread_life, stats_flags_e::logEvent, arg)                 \
  macro (OMP_parallel, stats_flags_e::logEvent, arg)                           \
  macro (OMP_parallel_overhead, stats_flags_e::logEvent, arg)                  \
  macro (OMP_teams, stats_flags_e::logEvent, arg)                              \
  macro (OMP_teams_overhead, stats_flags_e::logEvent, arg)                     \
  macro (OMP_loop_static, 0, arg)                                              \
  macro (OMP_loop_static_scheduling, 0, arg)                                   \
  macro (OMP_loop_dynamic, 0, arg)                                             \
  macro (OMP_loop_dynamic_scheduling, 0, arg)                                  \
  macro (OMP_distribute, 0, arg)                                               \
  macro (OMP_distribute_scheduling, 0, arg)                                    \
  macro (OMP_critical, 0, arg)                                                 \
  macro (OMP_critical_wait, 0, arg)                                            \
  macro (OMP_single, 0, arg)                                                   \
  macro (OMP_master, 0, arg)                                                   \
  macro (OMP_task_immediate, 0, arg)                                           \
  macro (OMP_task_taskwait, 0, arg)                                            \
  macro (OMP_task_taskyield, 0, arg)                                           \
  macro (OMP_task_taskgroup, 0, arg)                                           \
  macro (OMP_task_join_bar, 0, arg)                                            \
  macro (OMP_task_plain_bar, 0, arg)                                           \
  macro (OMP_taskloop_scheduling, 0, arg)                                      \
  macro (OMP_plain_barrier, stats_flags_e::logEvent, arg)                      \
  macro (OMP_idle, stats_flags_e::logEvent, arg)                               \
  macro (OMP_fork_barrier, stats_flags_e::logEvent, arg)                       \
  macro (OMP_join_barrier, stats_flags_e::logEvent, arg)                       \
  macro (OMP_serial, stats_flags_e::logEvent, arg)                             \
  macro (OMP_set_numthreads, stats_flags_e::noUnits | stats_flags_e::noTotal,  \
         arg)                                                                  \
  macro (OMP_PARALLEL_args, stats_flags_e::noUnits | stats_flags_e::noTotal,   \
         arg)                                                                  \
  macro (OMP_loop_static_iterations,                                           \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
  macro (OMP_loop_static_total_iterations,                                     \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
  macro (OMP_loop_dynamic_iterations,                                          \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
  macro (OMP_loop_dynamic_total_iterations,                                    \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
  macro (OMP_distribute_iterations,                                            \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
  KMP_FOREACH_DEVELOPER_TIMER(macro, arg)
// clang-format on

// OMP_worker_thread_life -- Time from thread becoming an OpenMP thread (either
//                           initializing OpenMP or being created by a master)
//                           until the thread is destroyed
// OMP_parallel           -- Time thread spends executing work directly
//                           within a #pragma omp parallel
// OMP_parallel_overhead  -- Time thread spends setting up a parallel region
// OMP_loop_static        -- Time thread spends executing loop iterations from
//                           a statically scheduled loop
// OMP_loop_static_scheduling -- Time thread spends scheduling loop iterations
//                               from a statically scheduled loop
// OMP_loop_dynamic       -- Time thread spends executing loop iterations from
//                           a dynamically scheduled loop
// OMP_loop_dynamic_scheduling -- Time thread spends scheduling loop iterations
//                                from a dynamically scheduled loop
// OMP_critical           -- Time thread spends executing critical section
// OMP_critical_wait      -- Time thread spends waiting to enter
//                           a critcal seciton
// OMP_single             -- Time spent executing a "single" region
// OMP_master             -- Time spent executing a "master" region
// OMP_task_immediate     -- Time spent executing non-deferred tasks
// OMP_task_taskwait      -- Time spent executing tasks inside a taskwait
//                           construct
// OMP_task_taskyield     -- Time spent executing tasks inside a taskyield
//                           construct
// OMP_task_taskgroup     -- Time spent executing tasks inside a taskygroup
//                           construct
// OMP_task_join_bar      -- Time spent executing tasks inside a join barrier
// OMP_task_plain_bar     -- Time spent executing tasks inside a barrier
//                           construct
// OMP_taskloop_scheduling -- Time spent scheduling tasks inside a taskloop
//                            construct
// OMP_plain_barrier      -- Time spent in a #pragma omp barrier construct or
//                           inside implicit barrier at end of worksharing
//                           construct
// OMP_idle               -- Time worker threads spend waiting for next
//                           parallel region
// OMP_fork_barrier       -- Time spent in a the fork barrier surrounding a
//                           parallel region
// OMP_join_barrier       -- Time spent in a the join barrier surrounding a
//                           parallel region
// OMP_serial             -- Time thread zero spends executing serial code
// OMP_set_numthreads     -- Values passed to omp_set_num_threads
// OMP_PARALLEL_args      -- Number of arguments passed to a parallel region
// OMP_loop_static_iterations -- Number of iterations thread is assigned for
//                               statically scheduled loops
// OMP_loop_dynamic_iterations -- Number of iterations thread is assigned for
//                                dynamically scheduled loops

#if (KMP_DEVELOPER_STATS)
// Timers which are of interest to runtime library developers, not end users.
// These have to be explicitly enabled in addition to the other stats.

// KMP_fork_barrier       -- time in __kmp_fork_barrier
// KMP_join_barrier       -- time in __kmp_join_barrier
// KMP_barrier            -- time in __kmp_barrier
// KMP_end_split_barrier  -- time in __kmp_end_split_barrier
// KMP_setup_icv_copy     -- time in __kmp_setup_icv_copy
// KMP_icv_copy           -- start/stop timer for any ICV copying
// KMP_linear_gather      -- time in __kmp_linear_barrier_gather
// KMP_linear_release     -- time in __kmp_linear_barrier_release
// KMP_tree_gather        -- time in __kmp_tree_barrier_gather
// KMP_tree_release       -- time in __kmp_tree_barrier_release
// KMP_hyper_gather       -- time in __kmp_hyper_barrier_gather
// KMP_hyper_release      -- time in __kmp_hyper_barrier_release
// clang-format off
#define KMP_FOREACH_DEVELOPER_TIMER(macro, arg)                                \
  macro(KMP_fork_call, 0, arg)                                                 \
  macro(KMP_join_call, 0, arg)                                                 \
  macro(KMP_end_split_barrier, 0, arg)                                         \
  macro(KMP_hier_gather, 0, arg)                                               \
  macro(KMP_hier_release, 0, arg)                                              \
  macro(KMP_hyper_gather, 0, arg)                                              \
  macro(KMP_hyper_release, 0, arg)                                             \
  macro(KMP_linear_gather, 0, arg)                                             \
  macro(KMP_linear_release, 0, arg)                                            \
  macro(KMP_tree_gather, 0, arg)                                               \
  macro(KMP_tree_release, 0, arg)                                              \
  macro(USER_resume, 0, arg)                                                   \
  macro(USER_suspend, 0, arg)                                                  \
  macro(KMP_allocate_team, 0, arg)                                             \
  macro(KMP_setup_icv_copy, 0, arg)                                            \
  macro(USER_icv_copy, 0, arg)                                                 \
  macro (FOR_static_steal_stolen,                                              \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
  macro (FOR_static_steal_chunks,                                              \
         stats_flags_e::noUnits | stats_flags_e::noTotal, arg)
#else
#define KMP_FOREACH_DEVELOPER_TIMER(macro, arg)
#endif
// clang-format on

/*!
 * \brief Add new explicit timers under KMP_FOREACH_EXPLICIT_TIMER() macro.
 *
 * @param macro a user defined macro that takes three arguments -
 * macro(TIMER_NAME, flags, arg)
 * @param arg a user defined argument to send to the user defined macro
 *
 * \warning YOU MUST HAVE THE SAME NAMED TIMER UNDER KMP_FOREACH_TIMER() OR ELSE
 * BAD THINGS WILL HAPPEN!
 *
 * \details Explicit timers are ones where we need to allocate a timer itself
 * (as well as the accumulated timing statistics). We allocate these on a
 * per-thread basis, and explicitly start and stop them. Block timers just
 * allocate the timer itself on the stack, and use the destructor to notice
 * block exit; they don't need to be defined here. The name here should be the
 * same as that of a timer above.
 *
 * @ingroup STATS_GATHERING
*/
#define KMP_FOREACH_EXPLICIT_TIMER(macro, arg) KMP_FOREACH_TIMER(macro, arg)

#define ENUMERATE(name, ignore, prefix) prefix##name,
enum timer_e { KMP_FOREACH_TIMER(ENUMERATE, TIMER_) TIMER_LAST };

enum explicit_timer_e {
  KMP_FOREACH_EXPLICIT_TIMER(ENUMERATE, EXPLICIT_TIMER_) EXPLICIT_TIMER_LAST
};

enum counter_e { KMP_FOREACH_COUNTER(ENUMERATE, COUNTER_) COUNTER_LAST };
#undef ENUMERATE

/*
 * A logarithmic histogram. It accumulates the number of values in each power of
 * ten bin.  So 1<=x<10, 10<=x<100, ...
 * Mostly useful where we have some big outliers and want to see information
 * about them.
 */
class logHistogram {
  enum {
    numBins = 31, /* Number of powers of 10. If this changes you need to change
                   * the initializer for binMax */

    /*
     * If you want to use this to analyse values that may be less than 1, (for
     * instance times in s), then the logOffset gives you negative powers.
     * In our case here, we're just looking at times in ticks, or counts, so we
     * can never see values with magnitude < 1 (other than zero), so we can set
     * it to 0.  As above change the initializer if you change this.
     */
    logOffset = 0
  };
  uint32_t KMP_ALIGN_CACHE zeroCount;
  struct {
    uint32_t count;
    double total;
  } bins[numBins];

  static double binMax[numBins];

#ifdef KMP_DEBUG
  uint64_t _total;

  void check() const {
    uint64_t t = zeroCount;
    for (int i = 0; i < numBins; i++)
      t += bins[i].count;
    KMP_DEBUG_ASSERT(t == _total);
  }
#else
  void check() const {}
#endif

public:
  logHistogram() { reset(); }

  logHistogram(logHistogram const &o) {
    for (int i = 0; i < numBins; i++)
      bins[i] = o.bins[i];
#ifdef KMP_DEBUG
    _total = o._total;
#endif
  }

  void reset() {
    zeroCount = 0;
    for (int i = 0; i < numBins; i++) {
      bins[i].count = 0;
      bins[i].total = 0;
    }

#ifdef KMP_DEBUG
    _total = 0;
#endif
  }
  uint32_t count(int b) const { return bins[b + logOffset].count; }
  double total(int b) const { return bins[b + logOffset].total; }
  static uint32_t findBin(double sample);

  logHistogram &operator+=(logHistogram const &o) {
    zeroCount += o.zeroCount;
    for (int i = 0; i < numBins; i++) {
      bins[i].count += o.bins[i].count;
      bins[i].total += o.bins[i].total;
    }
#ifdef KMP_DEBUG
    _total += o._total;
    check();
#endif

    return *this;
  }

  void addSample(double sample);
  int minBin() const;
  int maxBin() const;

  std::string format(char) const;
};

class statistic {
  double KMP_ALIGN_CACHE minVal;
  double maxVal;
  double meanVal;
  double m2;
  uint64_t sampleCount;
  double offset;
  bool collectingHist;
  logHistogram hist;

public:
  statistic(bool doHist = bool(KMP_STATS_HIST)) {
    reset();
    collectingHist = doHist;
  }
  statistic(statistic const &o)
      : minVal(o.minVal), maxVal(o.maxVal), meanVal(o.meanVal), m2(o.m2),
        sampleCount(o.sampleCount), offset(o.offset),
        collectingHist(o.collectingHist), hist(o.hist) {}
  statistic(double minv, double maxv, double meanv, uint64_t sc, double sd)
      : minVal(minv), maxVal(maxv), meanVal(meanv), m2(sd * sd * sc),
        sampleCount(sc), offset(0.0), collectingHist(false) {}
  bool haveHist() const { return collectingHist; }
  double getMin() const { return minVal; }
  double getMean() const { return meanVal; }
  double getMax() const { return maxVal; }
  uint64_t getCount() const { return sampleCount; }
  double getSD() const { return sqrt(m2 / sampleCount); }
  double getTotal() const { return sampleCount * meanVal; }
  logHistogram const *getHist() const { return &hist; }
  void setOffset(double d) { offset = d; }

  void reset() {
    minVal = std::numeric_limits<double>::max();
    maxVal = -minVal;
    meanVal = 0.0;
    m2 = 0.0;
    sampleCount = 0;
    offset = 0.0;
    hist.reset();
  }
  void addSample(double sample);
  void scale(double factor);
  void scaleDown(double f) { scale(1. / f); }
  void forceCount(uint64_t count) { sampleCount = count; }
  statistic &operator+=(statistic const &other);

  std::string format(char unit, bool total = false) const;
  std::string formatHist(char unit) const { return hist.format(unit); }
};

struct statInfo {
  const char *name;
  uint32_t flags;
};

class timeStat : public statistic {
  static statInfo timerInfo[];

public:
  timeStat() : statistic() {}
  static const char *name(timer_e e) { return timerInfo[e].name; }
  static bool noTotal(timer_e e) {
    return timerInfo[e].flags & stats_flags_e::noTotal;
  }
  static bool masterOnly(timer_e e) {
    return timerInfo[e].flags & stats_flags_e::onlyInMaster;
  }
  static bool workerOnly(timer_e e) {
    return timerInfo[e].flags & stats_flags_e::notInMaster;
  }
  static bool noUnits(timer_e e) {
    return timerInfo[e].flags & stats_flags_e::noUnits;
  }
  static bool logEvent(timer_e e) {
    return timerInfo[e].flags & stats_flags_e::logEvent;
  }
  static void clearEventFlags() {
    for (int i = 0; i < TIMER_LAST; i++) {
      timerInfo[i].flags &= (~(stats_flags_e::logEvent));
    }
  }
};

// Where we need explicitly to start and end the timer, this version can be used
// Since these timers normally aren't nicely scoped, so don't have a good place
// to live on the stack of the thread, they're more work to use.
class explicitTimer {
  timeStat *stat;
  timer_e timerEnumValue;
  tsc_tick_count startTime;
  tsc_tick_count pauseStartTime;
  tsc_tick_count::tsc_interval_t totalPauseTime;

public:
  explicitTimer(timeStat *s, timer_e te)
      : stat(s), timerEnumValue(te), startTime(), pauseStartTime(0),
        totalPauseTime() {}

  // void setStat(timeStat *s) { stat = s; }
  void start(tsc_tick_count tick);
  void pause(tsc_tick_count tick) { pauseStartTime = tick; }
  void resume(tsc_tick_count tick) {
    totalPauseTime += (tick - pauseStartTime);
  }
  void stop(tsc_tick_count tick, kmp_stats_list *stats_ptr = nullptr);
  void reset() {
    startTime = 0;
    pauseStartTime = 0;
    totalPauseTime = 0;
  }
  timer_e get_type() const { return timerEnumValue; }
};

// Where you need to partition a threads clock ticks into separate states
// e.g., a partitionedTimers class with two timers of EXECUTING_TASK, and
// DOING_NOTHING would render these conditions:
// time(EXECUTING_TASK) + time(DOING_NOTHING) = total time thread is alive
// No clock tick in the EXECUTING_TASK is a member of DOING_NOTHING and vice
// versa
class partitionedTimers {
private:
  std::vector<explicitTimer> timer_stack;

public:
  partitionedTimers();
  void init(explicitTimer timer);
  void exchange(explicitTimer timer);
  void push(explicitTimer timer);
  void pop();
  void windup();
};

// Special wrapper around the partioned timers to aid timing code blocks
// It avoids the need to have an explicit end, leaving the scope suffices.
class blockPartitionedTimer {
  partitionedTimers *part_timers;

public:
  blockPartitionedTimer(partitionedTimers *pt, explicitTimer timer)
      : part_timers(pt) {
    part_timers->push(timer);
  }
  ~blockPartitionedTimer() { part_timers->pop(); }
};

// Special wrapper around the thread state to aid in keeping state in code
// blocks It avoids the need to have an explicit end, leaving the scope
// suffices.
class blockThreadState {
  stats_state_e *state_pointer;
  stats_state_e old_state;

public:
  blockThreadState(stats_state_e *thread_state_pointer, stats_state_e new_state)
      : state_pointer(thread_state_pointer), old_state(*thread_state_pointer) {
    *state_pointer = new_state;
  }
  ~blockThreadState() { *state_pointer = old_state; }
};

// If all you want is a count, then you can use this...
// The individual per-thread counts will be aggregated into a statistic at
// program exit.
class counter {
  uint64_t value;
  static const statInfo counterInfo[];

public:
  counter() : value(0) {}
  void increment() { value++; }
  uint64_t getValue() const { return value; }
  void reset() { value = 0; }
  static const char *name(counter_e e) { return counterInfo[e].name; }
  static bool masterOnly(counter_e e) {
    return counterInfo[e].flags & stats_flags_e::onlyInMaster;
  }
};

/* ****************************************************************
    Class to implement an event

    There are four components to an event: start time, stop time
    nest_level, and timer_name.
    The start and stop time should be obvious (recorded in clock ticks).
    The nest_level relates to the bar width in the timeline graph.
    The timer_name is used to determine which timer event triggered this event.

    the interface to this class is through four read-only operations:
    1) getStart()     -- returns the start time as 64 bit integer
    2) getStop()      -- returns the stop time as 64 bit integer
    3) getNestLevel() -- returns the nest level of the event
    4) getTimerName() -- returns the timer name that triggered event

    *MORE ON NEST_LEVEL*
    The nest level is used in the bar graph that represents the timeline.
    Its main purpose is for showing how events are nested inside eachother.
    For example, say events, A, B, and C are recorded.  If the timeline
    looks like this:

Begin -------------------------------------------------------------> Time
         |    |          |        |          |              |
         A    B          C        C          B              A
       start start     start     end        end            end

       Then A, B, C will have a nest level of 1, 2, 3 respectively.
       These values are then used to calculate the barwidth so you can
       see that inside A, B has occurred, and inside B, C has occurred.
       Currently, this is shown with A's bar width being larger than B's
       bar width, and B's bar width being larger than C's bar width.

**************************************************************** */
class kmp_stats_event {
  uint64_t start;
  uint64_t stop;
  int nest_level;
  timer_e timer_name;

public:
  kmp_stats_event()
      : start(0), stop(0), nest_level(0), timer_name(TIMER_LAST) {}
  kmp_stats_event(uint64_t strt, uint64_t stp, int nst, timer_e nme)
      : start(strt), stop(stp), nest_level(nst), timer_name(nme) {}
  inline uint64_t getStart() const { return start; }
  inline uint64_t getStop() const { return stop; }
  inline int getNestLevel() const { return nest_level; }
  inline timer_e getTimerName() const { return timer_name; }
};

/* ****************************************************************
    Class to implement a dynamically expandable array of events

    ---------------------------------------------------------
    | event 1 | event 2 | event 3 | event 4 | ... | event N |
    ---------------------------------------------------------

    An event is pushed onto the back of this array at every
    explicitTimer->stop() call.  The event records the thread #,
    start time, stop time, and nest level related to the bar width.

    The event vector starts at size INIT_SIZE and grows (doubles in size)
    if needed.  An implication of this behavior is that log(N)
    reallocations are needed (where N is number of events).  If you want
    to avoid reallocations, then set INIT_SIZE to a large value.

    the interface to this class is through six operations:
    1) reset() -- sets the internal_size back to 0 but does not deallocate any
       memory
    2) size()  -- returns the number of valid elements in the vector
    3) push_back(start, stop, nest, timer_name) -- pushes an event onto
       the back of the array
    4) deallocate() -- frees all memory associated with the vector
    5) sort() -- sorts the vector by start time
    6) operator[index] or at(index) -- returns event reference at that index
**************************************************************** */
class kmp_stats_event_vector {
  kmp_stats_event *events;
  int internal_size;
  int allocated_size;
  static const int INIT_SIZE = 1024;

public:
  kmp_stats_event_vector() {
    events =
        (kmp_stats_event *)__kmp_allocate(sizeof(kmp_stats_event) * INIT_SIZE);
    internal_size = 0;
    allocated_size = INIT_SIZE;
  }
  ~kmp_stats_event_vector() {}
  inline void reset() { internal_size = 0; }
  inline int size() const { return internal_size; }
  void push_back(uint64_t start_time, uint64_t stop_time, int nest_level,
                 timer_e name) {
    int i;
    if (internal_size == allocated_size) {
      kmp_stats_event *tmp = (kmp_stats_event *)__kmp_allocate(
          sizeof(kmp_stats_event) * allocated_size * 2);
      for (i = 0; i < internal_size; i++)
        tmp[i] = events[i];
      __kmp_free(events);
      events = tmp;
      allocated_size *= 2;
    }
    events[internal_size] =
        kmp_stats_event(start_time, stop_time, nest_level, name);
    internal_size++;
    return;
  }
  void deallocate();
  void sort();
  const kmp_stats_event &operator[](int index) const { return events[index]; }
  kmp_stats_event &operator[](int index) { return events[index]; }
  const kmp_stats_event &at(int index) const { return events[index]; }
  kmp_stats_event &at(int index) { return events[index]; }
};

/* ****************************************************************
    Class to implement a doubly-linked, circular, statistics list

    |---| ---> |---| ---> |---| ---> |---| ---> ... next
    |   |      |   |      |   |      |   |
    |---| <--- |---| <--- |---| <--- |---| <--- ... prev
    Sentinel   first      second     third
    Node       node       node       node

    The Sentinel Node is the user handle on the list.
    The first node corresponds to thread 0's statistics.
    The second node corresponds to thread 1's statistics and so on...

    Each node has a _timers, _counters, and _explicitTimers array to hold that
    thread's statistics. The _explicitTimers point to the correct _timer and
    update its statistics at every stop() call. The explicitTimers' pointers are
    set up in the constructor. Each node also has an event vector to hold that
    thread's timing events. The event vector expands as necessary and records
    the start-stop times for each timer.

    The nestLevel variable is for plotting events and is related
    to the bar width in the timeline graph.

    Every thread will have a thread local pointer to its node in
    the list.  The sentinel node is used by the master thread to
    store "dummy" statistics before __kmp_create_worker() is called.
**************************************************************** */
class kmp_stats_list {
  int gtid;
  timeStat _timers[TIMER_LAST + 1];
  counter _counters[COUNTER_LAST + 1];
  explicitTimer thread_life_timer;
  partitionedTimers _partitionedTimers;
  int _nestLevel; // one per thread
  kmp_stats_event_vector _event_vector;
  kmp_stats_list *next;
  kmp_stats_list *prev;
  stats_state_e state;
  int thread_is_idle_flag;

public:
  kmp_stats_list()
      : thread_life_timer(&_timers[TIMER_OMP_worker_thread_life],
                          TIMER_OMP_worker_thread_life),
        _nestLevel(0), _event_vector(), next(this), prev(this), state(IDLE),
        thread_is_idle_flag(0) {}
  ~kmp_stats_list() {}
  inline timeStat *getTimer(timer_e idx) { return &_timers[idx]; }
  inline counter *getCounter(counter_e idx) { return &_counters[idx]; }
  inline partitionedTimers *getPartitionedTimers() {
    return &_partitionedTimers;
  }
  inline timeStat *getTimers() { return _timers; }
  inline counter *getCounters() { return _counters; }
  inline kmp_stats_event_vector &getEventVector() { return _event_vector; }
  inline void startLife() { thread_life_timer.start(tsc_tick_count::now()); }
  inline void endLife() { thread_life_timer.stop(tsc_tick_count::now(), this); }
  inline void resetEventVector() { _event_vector.reset(); }
  inline void incrementNestValue() { _nestLevel++; }
  inline int getNestValue() { return _nestLevel; }
  inline void decrementNestValue() { _nestLevel--; }
  inline int getGtid() const { return gtid; }
  inline void setGtid(int newgtid) { gtid = newgtid; }
  inline void setState(stats_state_e newstate) { state = newstate; }
  inline stats_state_e getState() const { return state; }
  inline stats_state_e *getStatePointer() { return &state; }
  inline bool isIdle() { return thread_is_idle_flag == 1; }
  inline void setIdleFlag() { thread_is_idle_flag = 1; }
  inline void resetIdleFlag() { thread_is_idle_flag = 0; }
  kmp_stats_list *push_back(int gtid); // returns newly created list node
  inline void push_event(uint64_t start_time, uint64_t stop_time,
                         int nest_level, timer_e name) {
    _event_vector.push_back(start_time, stop_time, nest_level, name);
  }
  void deallocate();
  class iterator;
  kmp_stats_list::iterator begin();
  kmp_stats_list::iterator end();
  int size();
  class iterator {
    kmp_stats_list *ptr;
    friend kmp_stats_list::iterator kmp_stats_list::begin();
    friend kmp_stats_list::iterator kmp_stats_list::end();

  public:
    iterator();
    ~iterator();
    iterator operator++();
    iterator operator++(int dummy);
    iterator operator--();
    iterator operator--(int dummy);
    bool operator!=(const iterator &rhs);
    bool operator==(const iterator &rhs);
    kmp_stats_list *operator*() const; // dereference operator
  };
};

/* ****************************************************************
   Class to encapsulate all output functions and the environment variables

   This module holds filenames for various outputs (normal stats, events, plot
   file), as well as coloring information for the plot file.

   The filenames and flags variables are read from environment variables.
   These are read once by the constructor of the global variable
   __kmp_stats_output which calls init().

   During this init() call, event flags for the timeStat::timerInfo[] global
   array are cleared if KMP_STATS_EVENTS is not true (on, 1, yes).

   The only interface function that is public is outputStats(heading).  This
   function should print out everything it needs to, either to files or stderr,
   depending on the environment variables described below

   ENVIRONMENT VARIABLES:
   KMP_STATS_FILE -- if set, all statistics (not events) will be printed to this
                     file, otherwise, print to stderr
   KMP_STATS_THREADS -- if set to "on", then will print per thread statistics to
                        either KMP_STATS_FILE or stderr
   KMP_STATS_PLOT_FILE -- if set, print the ploticus plot file to this filename,
                          otherwise, the plot file is sent to "events.plt"
   KMP_STATS_EVENTS -- if set to "on", then log events, otherwise, don't log
                       events
   KMP_STATS_EVENTS_FILE -- if set, all events are outputted to this file,
                            otherwise, output is sent to "events.dat"
**************************************************************** */
class kmp_stats_output_module {

public:
  struct rgb_color {
    float r;
    float g;
    float b;
  };

private:
  std::string outputFileName;
  static const char *eventsFileName;
  static const char *plotFileName;
  static int printPerThreadFlag;
  static int printPerThreadEventsFlag;
  static const rgb_color globalColorArray[];
  static rgb_color timerColorInfo[];

  void init();
  static void setupEventColors();
  static void printPloticusFile();
  static void printHeaderInfo(FILE *statsOut);
  static void printTimerStats(FILE *statsOut, statistic const *theStats,
                              statistic const *totalStats);
  static void printCounterStats(FILE *statsOut, statistic const *theStats);
  static void printCounters(FILE *statsOut, counter const *theCounters);
  static void printEvents(FILE *eventsOut, kmp_stats_event_vector *theEvents,
                          int gtid);
  static rgb_color getEventColor(timer_e e) { return timerColorInfo[e]; }
  static void windupExplicitTimers();
  bool eventPrintingEnabled() const { return printPerThreadEventsFlag; }

public:
  kmp_stats_output_module() { init(); }
  void outputStats(const char *heading);
};

#ifdef __cplusplus
extern "C" {
#endif
void __kmp_stats_init();
void __kmp_stats_fini();
void __kmp_reset_stats();
void __kmp_output_stats(const char *);
void __kmp_accumulate_stats_at_exit(void);
// thread local pointer to stats node within list
extern KMP_THREAD_LOCAL kmp_stats_list *__kmp_stats_thread_ptr;
// head to stats list.
extern kmp_stats_list *__kmp_stats_list;
// lock for __kmp_stats_list
extern kmp_tas_lock_t __kmp_stats_lock;
// reference start time
extern tsc_tick_count __kmp_stats_start_time;
// interface to output
extern kmp_stats_output_module __kmp_stats_output;

#ifdef __cplusplus
}
#endif

// Simple, standard interfaces that drop out completely if stats aren't enabled

/*!
 * \brief Adds value to specified timer (name).
 *
 * @param name timer name as specified under the KMP_FOREACH_TIMER() macro
 * @param value double precision sample value to add to statistics for the timer
 *
 * \details Use KMP_COUNT_VALUE(name, value) macro to add a particular value to
 * a timer statistics.
 *
 * @ingroup STATS_GATHERING
*/
#define KMP_COUNT_VALUE(name, value)                                           \
  __kmp_stats_thread_ptr->getTimer(TIMER_##name)->addSample(value)

/*!
 * \brief Increments specified counter (name).
 *
 * @param name counter name as specified under the KMP_FOREACH_COUNTER() macro
 *
 * \details Use KMP_COUNT_BLOCK(name, value) macro to increment a statistics
 * counter for the executing thread.
 *
 * @ingroup STATS_GATHERING
*/
#define KMP_COUNT_BLOCK(name)                                                  \
  __kmp_stats_thread_ptr->getCounter(COUNTER_##name)->increment()

/*!
 * \brief Outputs the current thread statistics and reset them.
 *
 * @param heading_string heading put above the final stats output
 *
 * \details Explicitly stops all timers and outputs all stats. Environment
 * variable, `OMPTB_STATSFILE=filename`, can be used to output the stats to a
 * filename instead of stderr. Environment variable,
 * `OMPTB_STATSTHREADS=true|undefined`, can be used to output thread specific
 * stats. For now the `OMPTB_STATSTHREADS` environment variable can either be
 * defined with any value, which will print out thread specific stats, or it can
 * be undefined (not specified in the environment) and thread specific stats
 * won't be printed. It should be noted that all statistics are reset when this
 * macro is called.
 *
 * @ingroup STATS_GATHERING
*/
#define KMP_OUTPUT_STATS(heading_string) __kmp_output_stats(heading_string)

/*!
 * \brief Initializes the paritioned timers to begin with name.
 *
 * @param name timer which you want this thread to begin with
 *
 * @ingroup STATS_GATHERING
*/
#define KMP_INIT_PARTITIONED_TIMERS(name)                                      \
  __kmp_stats_thread_ptr->getPartitionedTimers()->init(explicitTimer(          \
      __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name))

#define KMP_TIME_PARTITIONED_BLOCK(name)                                       \
  blockPartitionedTimer __PBLOCKTIME__(                                        \
      __kmp_stats_thread_ptr->getPartitionedTimers(),                          \
      explicitTimer(__kmp_stats_thread_ptr->getTimer(TIMER_##name),            \
                    TIMER_##name))

#define KMP_PUSH_PARTITIONED_TIMER(name)                                       \
  __kmp_stats_thread_ptr->getPartitionedTimers()->push(explicitTimer(          \
      __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name))

#define KMP_POP_PARTITIONED_TIMER()                                            \
  __kmp_stats_thread_ptr->getPartitionedTimers()->pop()

#define KMP_EXCHANGE_PARTITIONED_TIMER(name)                                   \
  __kmp_stats_thread_ptr->getPartitionedTimers()->exchange(explicitTimer(      \
      __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name))

#define KMP_SET_THREAD_STATE(state_name)                                       \
  __kmp_stats_thread_ptr->setState(state_name)

#define KMP_GET_THREAD_STATE() __kmp_stats_thread_ptr->getState()

#define KMP_SET_THREAD_STATE_BLOCK(state_name)                                 \
  blockThreadState __BTHREADSTATE__(__kmp_stats_thread_ptr->getStatePointer(), \
                                    state_name)

/*!
 * \brief resets all stats (counters to 0, timers to 0 elapsed ticks)
 *
 * \details Reset all stats for all threads.
 *
 * @ingroup STATS_GATHERING
*/
#define KMP_RESET_STATS() __kmp_reset_stats()

#if (KMP_DEVELOPER_STATS)
#define KMP_COUNT_DEVELOPER_VALUE(n, v) KMP_COUNT_VALUE(n, v)
#define KMP_COUNT_DEVELOPER_BLOCK(n) KMP_COUNT_BLOCK(n)
#define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) KMP_TIME_PARTITIONED_BLOCK(n)
#define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) KMP_PUSH_PARTITIONED_TIMER(n)
#define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) KMP_POP_PARTITIONED_TIMER(n)
#define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n)                            \
  KMP_EXCHANGE_PARTITIONED_TIMER(n)
#else
// Null definitions
#define KMP_COUNT_DEVELOPER_VALUE(n, v) ((void)0)
#define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0)
#define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) ((void)0)
#define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
#define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
#define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
#endif

#else // KMP_STATS_ENABLED

// Null definitions
#define KMP_COUNT_VALUE(n, v) ((void)0)
#define KMP_COUNT_BLOCK(n) ((void)0)

#define KMP_OUTPUT_STATS(heading_string) ((void)0)
#define KMP_RESET_STATS() ((void)0)

#define KMP_COUNT_DEVELOPER_VALUE(n, v) ((void)0)
#define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0)
#define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) ((void)0)
#define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
#define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
#define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
#define KMP_INIT_PARTITIONED_TIMERS(name) ((void)0)
#define KMP_TIME_PARTITIONED_BLOCK(name) ((void)0)
#define KMP_PUSH_PARTITIONED_TIMER(name) ((void)0)
#define KMP_POP_PARTITIONED_TIMER() ((void)0)
#define KMP_SET_THREAD_STATE(state_name) ((void)0)
#define KMP_GET_THREAD_STATE() ((void)0)
#define KMP_SET_THREAD_STATE_BLOCK(state_name) ((void)0)
#endif // KMP_STATS_ENABLED

#endif // KMP_STATS_H