reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
; RUN: opt < %s -licm -S | FileCheck %s
; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<opt-remark-emit>,loop(licm)' -S | FileCheck %s
; RUN: opt < %s -licm -enable-mssa-loop-dependency=true -verify-memoryssa -S | FileCheck %s

@X = global i32 0		; <i32*> [#uses=1]

declare void @foo()

declare i32 @llvm.bitreverse.i32(i32)

; This testcase tests for a problem where LICM hoists 
; potentially trapping instructions when they are not guaranteed to execute.
define i32 @test1(i1 %c) {
; CHECK-LABEL: @test1(
	%A = load i32, i32* @X		; <i32> [#uses=2]
	br label %Loop
Loop:		; preds = %LoopTail, %0
	call void @foo( )
	br i1 %c, label %LoopTail, label %IfUnEqual
        
IfUnEqual:		; preds = %Loop
; CHECK: IfUnEqual:
; CHECK-NEXT: sdiv i32 4, %A
	%B1 = sdiv i32 4, %A		; <i32> [#uses=1]
	br label %LoopTail
        
LoopTail:		; preds = %IfUnEqual, %Loop
	%B = phi i32 [ 0, %Loop ], [ %B1, %IfUnEqual ]		; <i32> [#uses=1]
	br i1 %c, label %Loop, label %Out
Out:		; preds = %LoopTail
	%C = sub i32 %A, %B		; <i32> [#uses=1]
	ret i32 %C
}


declare void @foo2(i32) nounwind


;; It is ok and desirable to hoist this potentially trapping instruction.
define i32 @test2(i1 %c) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: load i32, i32* @X
; CHECK-NEXT: %B = sdiv i32 4, %A
  %A = load i32, i32* @X
  br label %Loop

Loop:
  ;; Should have hoisted this div!
  %B = sdiv i32 4, %A
  br label %loop2

loop2:
  call void @foo2( i32 %B )
  br i1 %c, label %Loop, label %Out

Out:
  %C = sub i32 %A, %B
  ret i32 %C
}


; This loop invariant instruction should be constant folded, not hoisted.
define i32 @test3(i1 %c) {
; CHECK-LABEL: define i32 @test3(
; CHECK: call void @foo2(i32 6)
	%A = load i32, i32* @X		; <i32> [#uses=2]
	br label %Loop
Loop:
	%B = add i32 4, 2		; <i32> [#uses=2]
	call void @foo2( i32 %B )
	br i1 %c, label %Loop, label %Out
Out:		; preds = %Loop
	%C = sub i32 %A, %B		; <i32> [#uses=1]
	ret i32 %C
}

; CHECK-LABEL: @test4(
; CHECK: call
; CHECK: sdiv
; CHECK: ret
define i32 @test4(i32 %x, i32 %y) nounwind uwtable ssp {
entry:
  br label %for.body

for.body:                                         ; preds = %entry, %for.body
  %i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
  %n.01 = phi i32 [ 0, %entry ], [ %add, %for.body ]
  call void @foo_may_call_exit(i32 0)
  %div = sdiv i32 %x, %y
  %add = add nsw i32 %n.01, %div
  %inc = add nsw i32 %i.02, 1
  %cmp = icmp slt i32 %inc, 10000
  br i1 %cmp, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  %n.0.lcssa = phi i32 [ %add, %for.body ]
  ret i32 %n.0.lcssa
}

declare void @foo_may_call_exit(i32)

; PR14854
; CHECK-LABEL: @test5(
; CHECK: extractvalue
; CHECK: br label %tailrecurse
; CHECK: tailrecurse:
; CHECK: ifend:
; CHECK: insertvalue
define { i32*, i32 } @test5(i32 %i, { i32*, i32 } %e) {
entry:
  br label %tailrecurse

tailrecurse:                                      ; preds = %then, %entry
  %i.tr = phi i32 [ %i, %entry ], [ %cmp2, %then ]
  %out = extractvalue { i32*, i32 } %e, 1
  %d = insertvalue { i32*, i32 } %e, i32* null, 0
  %cmp1 = icmp sgt i32 %out, %i.tr
  br i1 %cmp1, label %then, label %ifend

then:                                             ; preds = %tailrecurse
  call void @foo()
  %cmp2 = add i32 %i.tr, 1
  br label %tailrecurse

ifend:                                            ; preds = %tailrecurse
  ret { i32*, i32 } %d
}

; CHECK: define void @test6(float %f)
; CHECK: fneg
; CHECK: br label %for.body
define void @test6(float %f) #2 {
entry:
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
  call void @foo_may_call_exit(i32 0)
  %neg = fneg float %f
  call void @use(float %neg)
  %inc = add nsw i32 %i, 1
  %cmp = icmp slt i32 %inc, 10000
  br i1 %cmp, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  ret void
}

declare void @use(float)

; CHECK: define i32 @hoist_bitreverse(i32 %0)
; CHECK: bitreverse
; CHECK: br label %header
define i32 @hoist_bitreverse(i32 %0)  {
  br label %header

header:
  %sum = phi i32 [ 0, %1 ], [ %5, %latch ]
  %2 = phi i32 [ 0, %1 ], [ %6, %latch ]
  %3 = icmp slt i32 %2, 1024
  br i1 %3, label %body, label %return

body:
  %4 = call i32 @llvm.bitreverse.i32(i32 %0)
  %5 = add i32 %sum, %4
  br label %latch

latch:
  %6 = add nsw i32 %2, 1
  br label %header

return:
  ret i32 %sum
}

; Can neither sink nor hoist
define i32 @test_volatile(i1 %c) {
; CHECK-LABEL: @test_volatile(
; CHECK-LABEL: Loop:
; CHECK: load volatile i32, i32* @X
; CHECK-LABEL: Out:
  br label %Loop

Loop:
  %A = load volatile i32, i32* @X
  br i1 %c, label %Loop, label %Out

Out:
  ret i32 %A
}


declare {}* @llvm.invariant.start.p0i8(i64, i8* nocapture) nounwind readonly
declare void @llvm.invariant.end.p0i8({}*, i64, i8* nocapture) nounwind
declare void @escaping.invariant.start({}*) nounwind
; invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
define i32 @test_fence(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry: 
  %gep = getelementptr inbounds i8, i8* %addr, i64 8
  %addr.i = bitcast i8* %gep to i32 *
  store atomic i32 5, i32 * %addr.i unordered, align 8
  fence release
  %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
  br label %loop

loop:
  %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
  %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
  %volload = load atomic i8, i8* %volatile unordered, align 8
  fence acquire
  %volchk = icmp eq i8 %volload, 0
  %addrld = load atomic i32, i32* %addr.i unordered, align 8
  %sel = select i1 %volchk, i32 0, i32 %addrld
  %sum.next = add i32 %sel, %sum
  %indvar.next = add i32 %indvar, 1
  %cond = icmp slt i32 %indvar.next, %n
  br i1 %cond, label %loop, label %loopexit

loopexit:
  ret i32 %sum
}



; Same as test above, but the load is no longer invariant (presence of
; invariant.end). We cannot hoist the addrld out of loop.
define i32 @test_fence1(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence1
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NEXT: invariant.end
; CHECK-NEXT: br label %loop
entry:
  %gep = getelementptr inbounds i8, i8* %addr, i64 8
  %addr.i = bitcast i8* %gep to i32 *
  store atomic i32 5, i32 * %addr.i unordered, align 8
  fence release
  %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
  call void @llvm.invariant.end.p0i8({}* %invst, i64 4, i8* %gep)
  br label %loop

loop:
  %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
  %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
  %volload = load atomic i8, i8* %volatile unordered, align 8
  fence acquire
  %volchk = icmp eq i8 %volload, 0
  %addrld = load atomic i32, i32* %addr.i unordered, align 8
  %sel = select i1 %volchk, i32 0, i32 %addrld
  %sum.next = add i32 %sel, %sum
  %indvar.next = add i32 %indvar, 1
  %cond = icmp slt i32 %indvar.next, %n
  br i1 %cond, label %loop, label %loopexit

loopexit:
  ret i32 %sum
}

; same as test above, but instead of invariant.end, we have the result of
; invariant.start escaping through a call. We cannot hoist the load.
define i32 @test_fence2(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence2
; CHECK-LABEL: entry
; CHECK-NOT: load
; CHECK: br label %loop
entry:
  %gep = getelementptr inbounds i8, i8* %addr, i64 8
  %addr.i = bitcast i8* %gep to i32 *
  store atomic i32 5, i32 * %addr.i unordered, align 8
  fence release
  %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
  call void @escaping.invariant.start({}* %invst)
  br label %loop

loop:
  %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
  %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
  %volload = load atomic i8, i8* %volatile unordered, align 8
  fence acquire
  %volchk = icmp eq i8 %volload, 0
  %addrld = load atomic i32, i32* %addr.i unordered, align 8
  %sel = select i1 %volchk, i32 0, i32 %addrld
  %sum.next = add i32 %sel, %sum
  %indvar.next = add i32 %indvar, 1
  %cond = icmp slt i32 %indvar.next, %n
  br i1 %cond, label %loop, label %loopexit

loopexit:
  ret i32 %sum
}

; FIXME: invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
; Consider the loadoperand addr.i bitcasted before being passed to
; invariant.start
define i32 @test_fence3(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence3
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry: 
  %addr.i = getelementptr inbounds i32, i32* %addr, i64 8
  %gep = bitcast i32* %addr.i to i8 *
  store atomic i32 5, i32 * %addr.i unordered, align 8
  fence release
  %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
  br label %loop

loop:
  %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
  %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
  %volload = load atomic i8, i8* %volatile unordered, align 8
  fence acquire
  %volchk = icmp eq i8 %volload, 0
  %addrld = load atomic i32, i32* %addr.i unordered, align 8
  %sel = select i1 %volchk, i32 0, i32 %addrld
  %sum.next = add i32 %sel, %sum
  %indvar.next = add i32 %indvar, 1
  %cond = icmp slt i32 %indvar.next, %n
  br i1 %cond, label %loop, label %loopexit

loopexit:
  ret i32 %sum
}

; We should not hoist the addrld out of the loop.
define i32 @test_fence4(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence4
; CHECK-LABEL: entry
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry: 
  %addr.i = getelementptr inbounds i32, i32* %addr, i64 8
  %gep = bitcast i32* %addr.i to i8 *
  br label %loop

loop:
  %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
  %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
  store atomic i32 5, i32 * %addr.i unordered, align 8
  fence release
  %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
  %volload = load atomic i8, i8* %volatile unordered, align 8
  fence acquire
  %volchk = icmp eq i8 %volload, 0
  %addrld = load atomic i32, i32* %addr.i unordered, align 8
  %sel = select i1 %volchk, i32 0, i32 %addrld
  %sum.next = add i32 %sel, %sum
  %indvar.next = add i32 %indvar, 1
  %cond = icmp slt i32 %indvar.next, %n
  br i1 %cond, label %loop, label %loopexit

loopexit:
  ret i32 %sum
}