1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
| ; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s
; First licm pass is to hoist/sink invariant stores if possible. Today LICM does
; not hoist/sink the invariant stores. Even if that changes, we should still
; vectorize this loop in case licm is not run.
; The next licm pass after vectorization is to hoist/sink loop invariant
; instructions.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; all tests check that it is legal to vectorize the stores to invariant
; address.
; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction(
; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b)
; CHECK: vector.memcheck:
; CHECK: found.conflict
; CHECK-LABEL: vector.body:
; CHECK: %vec.phi = phi <4 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
; CHECK: %wide.load = load <4 x i32>
; CHECK: [[ADD]] = add <4 x i32> %vec.phi, %wide.load
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
; CHECK-LABEL: middle.block:
; CHECK: %rdx.shuf = shufflevector <4 x i32>
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
store i32 %ntrunc, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; CHECK-LABEL: inv_val_store_to_inv_address(
; CHECK-LABEL: vector.body:
; CHECK: store i32 %ntrunc, i32* %a
; CHECK: store <4 x i32>
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %a
store i32 %ntrunc, i32* %tmp1
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Both of these tests below are handled as predicated stores.
; Conditional store
; if (b[i] == k) a = ntrunc
; TODO: We can be better with the code gen for the first test and we can have
; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional(
; CHECK-LABEL: vector.body:
; CHECK: %wide.load = load <4 x i32>, <4 x i32>*
; CHECK: [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}}
; CHECK: store <4 x i32>
; CHECK-NEXT: [[EE:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 0
; CHECK-NEXT: br i1 [[EE]], label %pred.store.if, label %pred.store.continue
; CHECK-LABEL: pred.store.if:
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: br label %pred.store.continue
; CHECK-LABEL: pred.store.continue:
; CHECK-NEXT: [[EE1:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 1
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %latch
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; if (b[i] == k)
; a = ntrunc
; else a = k;
; TODO: We could vectorize this once we support multiple uniform stores to the
; same address.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values(
; CHECK-NOT: load <4 x i32>
define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
cond_store_k:
store i32 %k, i32 * %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Instcombine'd version of above test. Now the store is no longer of invariant
; value.
; scalar store the value extracted from the last element of the vector value.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> undef, i32 [[K:%.*]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT: [[BROADCAST_SPLATINSERT7:%.*]] = insertelement <4 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT8:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT7]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq <4 x i32> [[WIDE_LOAD]], [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32>* [[TMP5]], align 4
; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP4]], <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32> [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT: store i32 [[TMP6]], i32* [[A]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[TMP2]], [[K]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK: cond_store:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: cond_store_k:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; invariant val stored to invariant address predicated on invariant condition
; This is not treated as a predicated store since the block the store belongs to
; is the latch block (which doesn't need to be predicated).
; variant/invariant values being stored to invariant address.
; test checks that the last element of the phi is extracted and scalar stored
; into the uniform address within the loop.
; Since the condition and the phi is loop invariant, they are LICM'ed after
; vectorization.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[NTRUNC]], [[K:%.*]]
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i1> undef, i1 [[CMP]], i32 3
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i32> undef, i32 [[K]], i32 3
; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32> [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP7:%.*]] = bitcast i32* [[TMP6]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32>* [[TMP7]], align 4
; CHECK-NEXT: store i32 [[TMP5]], i32* [[A]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK: cond_store:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: cond_store_k:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; variant value stored to uniform address tests that the code gen extracts the
; last element from the variant vector and scalar stores it into the uniform
; address.
; CHECK-LABEL: variant_val_store_to_inv_address
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N:%.*]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[B2:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[A1:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A1]], i64 1
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX3:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX3]]
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B2]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP5:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x i32> [[WIDE_LOAD]], i32 3
; CHECK-NEXT: store i32 [[TMP4]], i32* [[A]], align 4
; CHECK-NEXT: [[TMP5]] = add <4 x i32> [[VEC_PHI]], [[WIDE_LOAD]]
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP6:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP6]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi <4 x i32> [ [[TMP5]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[RDX_SHUF:%.*]] = shufflevector <4 x i32> [[DOTLCSSA]], <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
; CHECK-NEXT: [[BIN_RDX:%.*]] = add <4 x i32> [[DOTLCSSA]], [[RDX_SHUF]]
; CHECK-NEXT: [[RDX_SHUF5:%.*]] = shufflevector <4 x i32> [[BIN_RDX]], <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
; CHECK-NEXT: [[BIN_RDX6:%.*]] = add <4 x i32> [[BIN_RDX]], [[RDX_SHUF5]]
; CHECK-NEXT: [[TMP7:%.*]] = extractelement <4 x i32> [[BIN_RDX6]], i32 0
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: [[BC_MERGE_RDX:%.*]] = phi i32 [ [[TMP7]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[FOR_BODY]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ [[TMP3:%.*]], [[FOR_BODY]] ], [ [[BC_MERGE_RDX]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: store i32 [[TMP2]], i32* [[A]], align 4
; CHECK-NEXT: [[TMP3]] = add i32 [[TMP0]], [[TMP2]]
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: [[TMP3_LCSSA:%.*]] = phi i32 [ [[TMP3]], [[FOR_BODY]] ]
; CHECK-NEXT: br label [[FOR_END]]
define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %tmp2, i32* %a
%tmp3 = add i32 %tmp0, %tmp2
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%rdx.lcssa = phi i32 [ %tmp3, %for.body ]
ret i32 %rdx.lcssa
}
; Multiple variant stores to the same uniform address
; We do not vectorize such loops currently.
; for(; i < itr; i++) {
; for(; j < itr; j++) {
; var1[i] = var2[j] + var1[i];
; var1[i]++;
; }
; }
; CHECK-LABEL: multiple_uniform_stores
; CHECK-NOT: <4 x i32>
define i32 @multiple_uniform_stores(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
%cmp20 = icmp eq i32 %itr, 0
br i1 %cmp20, label %for.end10, label %for.cond1.preheader
for.cond1.preheader: ; preds = %entry, %for.inc8
%indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
%j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
%cmp218 = icmp ult i32 %j.022, %itr
br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8
for.body3.lr.ph: ; preds = %for.cond1.preheader
%arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
%0 = zext i32 %j.022 to i64
br label %for.body3
for.body3: ; preds = %for.body3, %for.body3.lr.ph
%indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %for.body3 ]
%arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%2 = load i32, i32* %arrayidx5, align 4
%add = add nsw i32 %2, %1
store i32 %add, i32* %arrayidx5, align 4
%3 = load i32, i32* %arrayidx5, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* %arrayidx5, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %itr
br i1 %exitcond, label %for.inc8, label %for.body3
for.inc8: ; preds = %for.body3, %for.cond1.preheader
%j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %for.body3 ]
%indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
%lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
%exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
br i1 %exitcond26, label %for.end10, label %for.cond1.preheader
for.end10: ; preds = %for.inc8, %entry
ret i32 undef
}
; second uniform store to the same address is conditional.
; we do not vectorize this.
; CHECK-LABEL: multiple_uniform_stores_conditional
; CHECK-NOT: <4 x i32>
define i32 @multiple_uniform_stores_conditional(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
%cmp20 = icmp eq i32 %itr, 0
br i1 %cmp20, label %for.end10, label %for.cond1.preheader
for.cond1.preheader: ; preds = %entry, %for.inc8
%indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
%j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
%cmp218 = icmp ult i32 %j.022, %itr
br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8
for.body3.lr.ph: ; preds = %for.cond1.preheader
%arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
%0 = zext i32 %j.022 to i64
br label %for.body3
for.body3: ; preds = %for.body3, %for.body3.lr.ph
%indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %latch ]
%arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%2 = load i32, i32* %arrayidx5, align 4
%add = add nsw i32 %2, %1
store i32 %add, i32* %arrayidx5, align 4
%3 = load i32, i32* %arrayidx5, align 4
%4 = add nsw i32 %3, 1
%5 = icmp ugt i32 %3, 42
br i1 %5, label %cond_store, label %latch
cond_store:
store i32 %4, i32* %arrayidx5, align 4
br label %latch
latch:
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %itr
br i1 %exitcond, label %for.inc8, label %for.body3
for.inc8: ; preds = %for.body3, %for.cond1.preheader
%j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %latch ]
%indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
%lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
%exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
br i1 %exitcond26, label %for.end10, label %for.cond1.preheader
for.end10: ; preds = %for.inc8, %entry
ret i32 undef
}
; cannot vectorize loop with unsafe dependency between uniform load (%tmp10) and store
; (%tmp12) to the same address
; PR39653
; Note: %tmp10 could be replaced by phi(%arg4, %tmp12), a potentially vectorizable
; 1st-order-recurrence
define void @unsafe_dep_uniform_load_store(i32 %arg, i32 %arg1, i64 %arg2, i16* %arg3, i32 %arg4, i64 %arg5) {
; CHECK-LABEL: unsafe_dep_uniform_load_store
; CHECK-NOT: <4 x i32>
bb:
%tmp = alloca i32
store i32 %arg4, i32* %tmp
%tmp6 = getelementptr inbounds i16, i16* %arg3, i64 %arg5
br label %bb7
bb7:
%tmp8 = phi i64 [ 0, %bb ], [ %tmp24, %bb7 ]
%tmp9 = phi i32 [ %arg1, %bb ], [ %tmp23, %bb7 ]
%tmp10 = load i32, i32* %tmp
%tmp11 = mul nsw i32 %tmp9, %tmp10
%tmp12 = srem i32 %tmp11, 65536
%tmp13 = add nsw i32 %tmp12, %tmp9
%tmp14 = trunc i32 %tmp13 to i16
%tmp15 = trunc i64 %tmp8 to i32
%tmp16 = add i32 %arg, %tmp15
%tmp17 = zext i32 %tmp16 to i64
%tmp18 = getelementptr inbounds i16, i16* %tmp6, i64 %tmp17
store i16 %tmp14, i16* %tmp18, align 2
%tmp19 = add i32 %tmp13, %tmp9
%tmp20 = trunc i32 %tmp19 to i16
%tmp21 = and i16 %tmp20, 255
%tmp22 = getelementptr inbounds i16, i16* %arg3, i64 %tmp17
store i16 %tmp21, i16* %tmp22, align 2
%tmp23 = add nsw i32 %tmp9, 1
%tmp24 = add nuw nsw i64 %tmp8, 1
%tmp25 = icmp eq i64 %tmp24, %arg2
store i32 %tmp12, i32* %tmp
br i1 %tmp25, label %bb26, label %bb7
bb26:
ret void
}
|