reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
"""Utilities for enumeration of finite and countably infinite sets.
"""
from __future__ import absolute_import, division, print_function
###
# Countable iteration

# Simplifies some calculations
class Aleph0(int):
    _singleton = None
    def __new__(type):
        if type._singleton is None:
            type._singleton = int.__new__(type)
        return type._singleton
    def __repr__(self): return '<aleph0>'
    def __str__(self): return 'inf'
    
    def __cmp__(self, b):
        return 1

    def __sub__(self, b):
        raise ValueError("Cannot subtract aleph0")
    __rsub__ = __sub__

    def __add__(self, b): 
        return self
    __radd__ = __add__

    def __mul__(self, b): 
        if b == 0: return b            
        return self
    __rmul__ = __mul__

    def __floordiv__(self, b):
        if b == 0: raise ZeroDivisionError
        return self
    __rfloordiv__ = __floordiv__
    __truediv__ = __floordiv__
    __rtuediv__ = __floordiv__
    __div__ = __floordiv__
    __rdiv__ = __floordiv__

    def __pow__(self, b):
        if b == 0: return 1
        return self
aleph0 = Aleph0()

def base(line):
    return line*(line+1)//2

def pairToN(pair):
    x,y = pair
    line,index = x+y,y
    return base(line)+index

def getNthPairInfo(N):
    # Avoid various singularities
    if N==0:
        return (0,0)

    # Gallop to find bounds for line
    line = 1
    next = 2
    while base(next)<=N:
        line = next
        next = line << 1
    
    # Binary search for starting line
    lo = line
    hi = line<<1
    while lo + 1 != hi:
        #assert base(lo) <= N < base(hi)
        mid = (lo + hi)>>1
        if base(mid)<=N:
            lo = mid
        else:
            hi = mid

    line = lo
    return line, N - base(line)

def getNthPair(N):
    line,index = getNthPairInfo(N)
    return (line - index, index)

def getNthPairBounded(N,W=aleph0,H=aleph0,useDivmod=False):
    """getNthPairBounded(N, W, H) -> (x, y)
    
    Return the N-th pair such that 0 <= x < W and 0 <= y < H."""

    if W <= 0 or H <= 0:
        raise ValueError("Invalid bounds")
    elif N >= W*H:
        raise ValueError("Invalid input (out of bounds)")

    # Simple case...
    if W is aleph0 and H is aleph0:
        return getNthPair(N)

    # Otherwise simplify by assuming W < H
    if H < W:
        x,y = getNthPairBounded(N,H,W,useDivmod=useDivmod)
        return y,x

    if useDivmod:
        return N%W,N//W
    else:
        # Conceptually we want to slide a diagonal line across a
        # rectangle. This gives more interesting results for large
        # bounds than using divmod.
        
        # If in lower left, just return as usual
        cornerSize = base(W)
        if N < cornerSize:
            return getNthPair(N)

        # Otherwise if in upper right, subtract from corner
        if H is not aleph0:
            M = W*H - N - 1
            if M < cornerSize:
                x,y = getNthPair(M)
                return (W-1-x,H-1-y)

        # Otherwise, compile line and index from number of times we
        # wrap.
        N = N - cornerSize
        index,offset = N%W,N//W
        # p = (W-1, 1+offset) + (-1,1)*index
        return (W-1-index, 1+offset+index)
def getNthPairBoundedChecked(N,W=aleph0,H=aleph0,useDivmod=False,GNP=getNthPairBounded):
    x,y = GNP(N,W,H,useDivmod)
    assert 0 <= x < W and 0 <= y < H
    return x,y

def getNthNTuple(N, W, H=aleph0, useLeftToRight=False):
    """getNthNTuple(N, W, H) -> (x_0, x_1, ..., x_W)

    Return the N-th W-tuple, where for 0 <= x_i < H."""

    if useLeftToRight:
        elts = [None]*W
        for i in range(W):
            elts[i],N = getNthPairBounded(N, H)
        return tuple(elts)
    else:
        if W==0:
            return ()
        elif W==1:
            return (N,)
        elif W==2:
            return getNthPairBounded(N, H, H)
        else:
            LW,RW = W//2, W - (W//2)
            L,R = getNthPairBounded(N, H**LW, H**RW)
            return (getNthNTuple(L,LW,H=H,useLeftToRight=useLeftToRight) + 
                    getNthNTuple(R,RW,H=H,useLeftToRight=useLeftToRight))
def getNthNTupleChecked(N, W, H=aleph0, useLeftToRight=False, GNT=getNthNTuple):
    t = GNT(N,W,H,useLeftToRight)
    assert len(t) == W
    for i in t:
        assert i < H
    return t

def getNthTuple(N, maxSize=aleph0, maxElement=aleph0, useDivmod=False, useLeftToRight=False):
    """getNthTuple(N, maxSize, maxElement) -> x

    Return the N-th tuple where len(x) < maxSize and for y in x, 0 <=
    y < maxElement."""

    # All zero sized tuples are isomorphic, don't ya know.
    if N == 0:
        return ()
    N -= 1
    if maxElement is not aleph0:
        if maxSize is aleph0:
            raise NotImplementedError('Max element size without max size unhandled')
        bounds = [maxElement**i for i in range(1, maxSize+1)]
        S,M = getNthPairVariableBounds(N, bounds)
    else:
        S,M = getNthPairBounded(N, maxSize, useDivmod=useDivmod)
    return getNthNTuple(M, S+1, maxElement, useLeftToRight=useLeftToRight)
def getNthTupleChecked(N, maxSize=aleph0, maxElement=aleph0, 
                       useDivmod=False, useLeftToRight=False, GNT=getNthTuple):
    # FIXME: maxsize is inclusive
    t = GNT(N,maxSize,maxElement,useDivmod,useLeftToRight)
    assert len(t) <= maxSize
    for i in t:
        assert i < maxElement
    return t

def getNthPairVariableBounds(N, bounds):
    """getNthPairVariableBounds(N, bounds) -> (x, y)

    Given a finite list of bounds (which may be finite or aleph0),
    return the N-th pair such that 0 <= x < len(bounds) and 0 <= y <
    bounds[x]."""

    if not bounds:
        raise ValueError("Invalid bounds")
    if not (0 <= N < sum(bounds)):
        raise ValueError("Invalid input (out of bounds)")

    level = 0
    active = list(range(len(bounds)))
    active.sort(key=lambda i: bounds[i])
    prevLevel = 0
    for i,index in enumerate(active):
        level = bounds[index]
        W = len(active) - i
        if level is aleph0:
            H = aleph0
        else:
            H = level - prevLevel
        levelSize = W*H
        if N<levelSize: # Found the level
            idelta,delta = getNthPairBounded(N, W, H)
            return active[i+idelta],prevLevel+delta
        else:
            N -= levelSize
            prevLevel = level
    else:
        raise RuntimError("Unexpected loop completion")

def getNthPairVariableBoundsChecked(N, bounds, GNVP=getNthPairVariableBounds):
    x,y = GNVP(N,bounds)
    assert 0 <= x < len(bounds) and 0 <= y < bounds[x]
    return (x,y)

###

def testPairs():
    W = 3
    H = 6
    a = [['  ' for x in range(10)] for y in range(10)]
    b = [['  ' for x in range(10)] for y in range(10)]
    for i in range(min(W*H,40)):
        x,y = getNthPairBounded(i,W,H)
        x2,y2 = getNthPairBounded(i,W,H,useDivmod=True)
        print(i,(x,y),(x2,y2))
        a[y][x] = '%2d'%i
        b[y2][x2] = '%2d'%i

    print('-- a --')
    for ln in a[::-1]:
        if ''.join(ln).strip():
            print('  '.join(ln))
    print('-- b --')
    for ln in b[::-1]:
        if ''.join(ln).strip():
            print('  '.join(ln))

def testPairsVB():
    bounds = [2,2,4,aleph0,5,aleph0]
    a = [['  ' for x in range(15)] for y in range(15)]
    b = [['  ' for x in range(15)] for y in range(15)]
    for i in range(min(sum(bounds),40)):
        x,y = getNthPairVariableBounds(i, bounds)
        print(i,(x,y))
        a[y][x] = '%2d'%i

    print('-- a --')
    for ln in a[::-1]:
        if ''.join(ln).strip():
            print('  '.join(ln))

###

# Toggle to use checked versions of enumeration routines.
if False:
    getNthPairVariableBounds = getNthPairVariableBoundsChecked
    getNthPairBounded = getNthPairBoundedChecked
    getNthNTuple = getNthNTupleChecked
    getNthTuple = getNthTupleChecked

if __name__ == '__main__':
    testPairs()

    testPairsVB()