reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
//===-- PipeWindows.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Host/windows/PipeWindows.h"

#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"

#include <fcntl.h>
#include <io.h>
#include <rpc.h>

#include <atomic>
#include <string>

using namespace lldb;
using namespace lldb_private;

namespace {
std::atomic<uint32_t> g_pipe_serial(0);
constexpr llvm::StringLiteral g_pipe_name_prefix = "\\\\.\\Pipe\\";
} // namespace

PipeWindows::PipeWindows()
    : m_read(INVALID_HANDLE_VALUE), m_write(INVALID_HANDLE_VALUE),
      m_read_fd(PipeWindows::kInvalidDescriptor),
      m_write_fd(PipeWindows::kInvalidDescriptor) {
  ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
  ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}

PipeWindows::PipeWindows(pipe_t read, pipe_t write)
    : m_read((HANDLE)read), m_write((HANDLE)write),
      m_read_fd(PipeWindows::kInvalidDescriptor),
      m_write_fd(PipeWindows::kInvalidDescriptor) {
  assert(read != LLDB_INVALID_PIPE || write != LLDB_INVALID_PIPE);

  // Don't risk in passing file descriptors and getting handles from them by
  // _get_osfhandle since the retrieved handles are highly likely unrecognized
  // in the current process and usually crashes the program.  Pass handles
  // instead since the handle can be inherited.

  if (read != LLDB_INVALID_PIPE) {
    m_read_fd = _open_osfhandle((intptr_t)read, _O_RDONLY);
    // Make sure the fd and native handle are consistent.
    if (m_read_fd < 0)
      m_read = INVALID_HANDLE_VALUE;
  }

  if (write != LLDB_INVALID_PIPE) {
    m_write_fd = _open_osfhandle((intptr_t)write, _O_WRONLY);
    if (m_write_fd < 0)
      m_write = INVALID_HANDLE_VALUE;
  }

  ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
  ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}

PipeWindows::~PipeWindows() { Close(); }

Status PipeWindows::CreateNew(bool child_process_inherit) {
  // Create an anonymous pipe with the specified inheritance.
  SECURITY_ATTRIBUTES sa{sizeof(SECURITY_ATTRIBUTES), 0,
                         child_process_inherit ? TRUE : FALSE};
  BOOL result = ::CreatePipe(&m_read, &m_write, &sa, 1024);
  if (result == FALSE)
    return Status(::GetLastError(), eErrorTypeWin32);

  m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
  ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
  m_read_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr);

  m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);
  ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));

  return Status();
}

Status PipeWindows::CreateNewNamed(bool child_process_inherit) {
  // Even for anonymous pipes, we open a named pipe.  This is because you
  // cannot get overlapped i/o on Windows without using a named pipe.  So we
  // synthesize a unique name.
  uint32_t serial = g_pipe_serial.fetch_add(1);
  std::string pipe_name;
  llvm::raw_string_ostream pipe_name_stream(pipe_name);
  pipe_name_stream << "lldb.pipe." << ::GetCurrentProcessId() << "." << serial;
  pipe_name_stream.flush();

  return CreateNew(pipe_name.c_str(), child_process_inherit);
}

Status PipeWindows::CreateNew(llvm::StringRef name,
                              bool child_process_inherit) {
  if (name.empty())
    return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);

  if (CanRead() || CanWrite())
    return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);

  std::string pipe_path = g_pipe_name_prefix;
  pipe_path.append(name);

  // Always open for overlapped i/o.  We implement blocking manually in Read
  // and Write.
  DWORD read_mode = FILE_FLAG_OVERLAPPED;
  m_read = ::CreateNamedPipeA(
      pipe_path.c_str(), PIPE_ACCESS_INBOUND | read_mode,
      PIPE_TYPE_BYTE | PIPE_WAIT, 1, 1024, 1024, 120 * 1000, NULL);
  if (INVALID_HANDLE_VALUE == m_read)
    return Status(::GetLastError(), eErrorTypeWin32);
  m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
  ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
  m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);

  // Open the write end of the pipe. Note that closing either the read or 
  // write end of the pipe could directly close the pipe itself.
  Status result = OpenNamedPipe(name, child_process_inherit, false);
  if (!result.Success()) {
    CloseReadFileDescriptor();
    return result;
  }

  return result;
}

Status PipeWindows::CreateWithUniqueName(llvm::StringRef prefix,
                                         bool child_process_inherit,
                                         llvm::SmallVectorImpl<char> &name) {
  llvm::SmallString<128> pipe_name;
  Status error;
  ::UUID unique_id;
  RPC_CSTR unique_string;
  RPC_STATUS status = ::UuidCreate(&unique_id);
  if (status == RPC_S_OK || status == RPC_S_UUID_LOCAL_ONLY)
    status = ::UuidToStringA(&unique_id, &unique_string);
  if (status == RPC_S_OK) {
    pipe_name = prefix;
    pipe_name += "-";
    pipe_name += reinterpret_cast<char *>(unique_string);
    ::RpcStringFreeA(&unique_string);
    error = CreateNew(pipe_name, child_process_inherit);
  } else {
    error.SetError(status, eErrorTypeWin32);
  }
  if (error.Success())
    name = pipe_name;
  return error;
}

Status PipeWindows::OpenAsReader(llvm::StringRef name,
                                 bool child_process_inherit) {
  if (CanRead())
    return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);

  return OpenNamedPipe(name, child_process_inherit, true);
}

Status
PipeWindows::OpenAsWriterWithTimeout(llvm::StringRef name,
                                     bool child_process_inherit,
                                     const std::chrono::microseconds &timeout) {
  if (CanWrite())
    return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);

  return OpenNamedPipe(name, child_process_inherit, false);
}

Status PipeWindows::OpenNamedPipe(llvm::StringRef name,
                                  bool child_process_inherit, bool is_read) {
  if (name.empty())
    return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);

  assert(is_read ? !CanRead() : !CanWrite());

  SECURITY_ATTRIBUTES attributes = {};
  attributes.bInheritHandle = child_process_inherit;

  std::string pipe_path = g_pipe_name_prefix;
  pipe_path.append(name);

  if (is_read) {
    m_read = ::CreateFileA(pipe_path.c_str(), GENERIC_READ, 0, &attributes,
                           OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
    if (INVALID_HANDLE_VALUE == m_read)
      return Status(::GetLastError(), eErrorTypeWin32);

    m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);

    ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
    m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
  } else {
    m_write = ::CreateFileA(pipe_path.c_str(), GENERIC_WRITE, 0, &attributes,
                            OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
    if (INVALID_HANDLE_VALUE == m_write)
      return Status(::GetLastError(), eErrorTypeWin32);

    m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);

    ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
  }

  return Status();
}

int PipeWindows::GetReadFileDescriptor() const { return m_read_fd; }

int PipeWindows::GetWriteFileDescriptor() const { return m_write_fd; }

int PipeWindows::ReleaseReadFileDescriptor() {
  if (!CanRead())
    return PipeWindows::kInvalidDescriptor;
  int result = m_read_fd;
  m_read_fd = PipeWindows::kInvalidDescriptor;
  if (m_read_overlapped.hEvent)
    ::CloseHandle(m_read_overlapped.hEvent);
  m_read = INVALID_HANDLE_VALUE;
  ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
  return result;
}

int PipeWindows::ReleaseWriteFileDescriptor() {
  if (!CanWrite())
    return PipeWindows::kInvalidDescriptor;
  int result = m_write_fd;
  m_write_fd = PipeWindows::kInvalidDescriptor;
  m_write = INVALID_HANDLE_VALUE;
  ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
  return result;
}

void PipeWindows::CloseReadFileDescriptor() {
  if (!CanRead())
    return;

  if (m_read_overlapped.hEvent)
    ::CloseHandle(m_read_overlapped.hEvent);

  _close(m_read_fd);
  m_read = INVALID_HANDLE_VALUE;
  m_read_fd = PipeWindows::kInvalidDescriptor;
  ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
}

void PipeWindows::CloseWriteFileDescriptor() {
  if (!CanWrite())
    return;

  _close(m_write_fd);
  m_write = INVALID_HANDLE_VALUE;
  m_write_fd = PipeWindows::kInvalidDescriptor;
  ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}

void PipeWindows::Close() {
  CloseReadFileDescriptor();
  CloseWriteFileDescriptor();
}

Status PipeWindows::Delete(llvm::StringRef name) { return Status(); }

bool PipeWindows::CanRead() const { return (m_read != INVALID_HANDLE_VALUE); }

bool PipeWindows::CanWrite() const { return (m_write != INVALID_HANDLE_VALUE); }

HANDLE
PipeWindows::GetReadNativeHandle() { return m_read; }

HANDLE
PipeWindows::GetWriteNativeHandle() { return m_write; }

Status PipeWindows::ReadWithTimeout(void *buf, size_t size,
                                    const std::chrono::microseconds &duration,
                                    size_t &bytes_read) {
  if (!CanRead())
    return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32);

  bytes_read = 0;
  DWORD sys_bytes_read = size;
  BOOL result = ::ReadFile(m_read, buf, sys_bytes_read, &sys_bytes_read,
                           &m_read_overlapped);
  if (!result && GetLastError() != ERROR_IO_PENDING)
    return Status(::GetLastError(), eErrorTypeWin32);

  DWORD timeout = (duration == std::chrono::microseconds::zero())
                      ? INFINITE
                      : duration.count() * 1000;
  DWORD wait_result = ::WaitForSingleObject(m_read_overlapped.hEvent, timeout);
  if (wait_result != WAIT_OBJECT_0) {
    // The operation probably failed.  However, if it timed out, we need to
    // cancel the I/O. Between the time we returned from WaitForSingleObject
    // and the time we call CancelIoEx, the operation may complete.  If that
    // hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that
    // happens, the original operation should be considered to have been
    // successful.
    bool failed = true;
    DWORD failure_error = ::GetLastError();
    if (wait_result == WAIT_TIMEOUT) {
      BOOL cancel_result = CancelIoEx(m_read, &m_read_overlapped);
      if (!cancel_result && GetLastError() == ERROR_NOT_FOUND)
        failed = false;
    }
    if (failed)
      return Status(failure_error, eErrorTypeWin32);
  }

  // Now we call GetOverlappedResult setting bWait to false, since we've
  // already waited as long as we're willing to.
  if (!GetOverlappedResult(m_read, &m_read_overlapped, &sys_bytes_read, FALSE))
    return Status(::GetLastError(), eErrorTypeWin32);

  bytes_read = sys_bytes_read;
  return Status();
}

Status PipeWindows::Write(const void *buf, size_t num_bytes,
                          size_t &bytes_written) {
  if (!CanWrite())
    return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32);

  DWORD sys_bytes_written = 0;
  BOOL write_result = ::WriteFile(m_write, buf, num_bytes, &sys_bytes_written,
                                  &m_write_overlapped);
  if (!write_result && GetLastError() != ERROR_IO_PENDING)
    return Status(::GetLastError(), eErrorTypeWin32);

  BOOL result = GetOverlappedResult(m_write, &m_write_overlapped,
                                    &sys_bytes_written, TRUE);
  if (!result)
    return Status(::GetLastError(), eErrorTypeWin32);
  return Status();
}