1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
| /*
Name: imath.c
Purpose: Arbitrary precision integer arithmetic routines.
Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "imath.h"
#if DEBUG
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#if DEBUG
#define STATIC /* public */
#else
#define STATIC static
#endif
const mp_result MP_OK = 0; /* no error, all is well */
const mp_result MP_FALSE = 0; /* boolean false */
const mp_result MP_TRUE = -1; /* boolean true */
const mp_result MP_MEMORY = -2; /* out of memory */
const mp_result MP_RANGE = -3; /* argument out of range */
const mp_result MP_UNDEF = -4; /* result undefined */
const mp_result MP_TRUNC = -5; /* output truncated */
const mp_result MP_BADARG = -6; /* invalid null argument */
const mp_result MP_MINERR = -6;
const mp_sign MP_NEG = 1; /* value is strictly negative */
const mp_sign MP_ZPOS = 0; /* value is non-negative */
STATIC const char *s_unknown_err = "unknown result code";
STATIC const char *s_error_msg[] = {
"error code 0",
"boolean true",
"out of memory",
"argument out of range",
"result undefined",
"output truncated",
"invalid argument",
NULL
};
/* Argument checking macros
Use CHECK() where a return value is required; NRCHECK() elsewhere */
#define CHECK(TEST) assert(TEST)
#define NRCHECK(TEST) assert(TEST)
/* The ith entry of this table gives the value of log_i(2).
An integer value n requires ceil(log_i(n)) digits to be represented
in base i. Since it is easy to compute lg(n), by counting bits, we
can compute log_i(n) = lg(n) * log_i(2).
The use of this table eliminates a dependency upon linkage against
the standard math libraries.
If MP_MAX_RADIX is increased, this table should be expanded too.
*/
STATIC const double s_log2[] = {
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
0.193426404, /* 36 */
};
/* Return the number of digits needed to represent a static value */
#define MP_VALUE_DIGITS(V) \
((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
/* Round precision P to nearest word boundary */
#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
/* Set array P of S digits to zero */
#define ZERO(P, S) \
do{ \
mp_size i__ = (S) * sizeof(mp_digit); \
mp_digit *p__ = (P); \
memset(p__, 0, i__); \
} while(0)
/* Copy S digits from array P to array Q */
#define COPY(P, Q, S) \
do{ \
mp_size i__ = (S) * sizeof(mp_digit); \
mp_digit *p__ = (P), *q__ = (Q); \
memcpy(q__, p__, i__); \
} while(0)
/* Reverse N elements of type T in array A */
#define REV(T, A, N) \
do{ \
T *u_ = (A), *v_ = u_ + (N) - 1; \
while (u_ < v_) { \
T xch = *u_; \
*u_++ = *v_; \
*v_-- = xch; \
} \
} while(0)
#define CLAMP(Z) \
do{ \
mp_int z_ = (Z); \
mp_size uz_ = MP_USED(z_); \
mp_digit *dz_ = MP_DIGITS(z_) + uz_ -1; \
while (uz_ > 1 && (*dz_-- == 0)) \
--uz_; \
MP_USED(z_) = uz_; \
} while(0)
/* Select min/max. Do not provide expressions for which multiple
evaluation would be problematic, e.g. x++ */
#define MIN(A, B) ((B)<(A)?(B):(A))
#define MAX(A, B) ((B)>(A)?(B):(A))
/* Exchange lvalues A and B of type T, e.g.
SWAP(int, x, y) where x and y are variables of type int. */
#define SWAP(T, A, B) \
do{ \
T t_ = (A); \
A = (B); \
B = t_; \
} while(0)
/* Used to set up and access simple temp stacks within functions. */
#define DECLARE_TEMP(N) \
mpz_t temp[(N)]; \
int last__ = 0
#define CLEANUP_TEMP() \
CLEANUP: \
while (--last__ >= 0) \
mp_int_clear(TEMP(last__))
#define TEMP(K) (temp + (K))
#define LAST_TEMP() TEMP(last__)
#define SETUP(E) \
do{ \
if ((res = (E)) != MP_OK) \
goto CLEANUP; \
++(last__); \
} while(0)
/* Compare value to zero. */
#define CMPZ(Z) \
(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
/* Multiply X by Y into Z, ignoring signs. Requires that Z have
enough storage preallocated to hold the result. */
#define UMUL(X, Y, Z) \
do{ \
mp_size ua_ = MP_USED(X), ub_ = MP_USED(Y); \
mp_size o_ = ua_ + ub_; \
ZERO(MP_DIGITS(Z), o_); \
(void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_); \
MP_USED(Z) = o_; \
CLAMP(Z); \
} while(0)
/* Square X into Z. Requires that Z have enough storage to hold the
result. */
#define USQR(X, Z) \
do{ \
mp_size ua_ = MP_USED(X), o_ = ua_ + ua_; \
ZERO(MP_DIGITS(Z), o_); \
(void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_); \
MP_USED(Z) = o_; \
CLAMP(Z); \
} while(0)
#define UPPER_HALF(W) ((mp_word)((W) >> MP_DIGIT_BIT))
#define LOWER_HALF(W) ((mp_digit)(W))
#define HIGH_BIT_SET(W) ((W) >> (MP_WORD_BIT - 1))
#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
/* Default number of digits allocated to a new mp_int */
#if IMATH_TEST
mp_size default_precision = MP_DEFAULT_PREC;
#else
STATIC const mp_size default_precision = MP_DEFAULT_PREC;
#endif
/* Minimum number of digits to invoke recursive multiply */
#if IMATH_TEST
mp_size multiply_threshold = MP_MULT_THRESH;
#else
STATIC const mp_size multiply_threshold = MP_MULT_THRESH;
#endif
/* Allocate a buffer of (at least) num digits, or return
NULL if that couldn't be done. */
STATIC mp_digit *s_alloc(mp_size num);
/* Release a buffer of digits allocated by s_alloc(). */
STATIC void s_free(void *ptr);
/* Insure that z has at least min digits allocated, resizing if
necessary. Returns true if successful, false if out of memory. */
STATIC int s_pad(mp_int z, mp_size min);
/* Fill in a "fake" mp_int on the stack with a given value */
STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
STATIC void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
/* Compare two runs of digits of given length, returns <0, 0, >0 */
STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
/* Pack the unsigned digits of v into array t */
STATIC int s_uvpack(mp_usmall v, mp_digit t[]);
/* Compare magnitudes of a and b, returns <0, 0, >0 */
STATIC int s_ucmp(mp_int a, mp_int b);
/* Compare magnitudes of a and v, returns <0, 0, >0 */
STATIC int s_vcmp(mp_int a, mp_small v);
STATIC int s_uvcmp(mp_int a, mp_usmall uv);
/* Unsigned magnitude addition; assumes dc is big enough.
Carry out is returned (no memory allocated). */
STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned magnitude subtraction. Assumes dc is big enough. */
STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned recursive multiplication. Assumes dc is big enough. */
STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned magnitude multiplication. Assumes dc is big enough. */
STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned recursive squaring. Assumes dc is big enough. */
STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
/* Unsigned magnitude squaring. Assumes dc is big enough. */
STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
/* Single digit addition. Assumes a is big enough. */
STATIC void s_dadd(mp_int a, mp_digit b);
/* Single digit multiplication. Assumes a is big enough. */
STATIC void s_dmul(mp_int a, mp_digit b);
/* Single digit multiplication on buffers; assumes dc is big enough. */
STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
mp_size size_a);
/* Single digit division. Replaces a with the quotient,
returns the remainder. */
STATIC mp_digit s_ddiv(mp_int a, mp_digit b);
/* Quick division by a power of 2, replaces z (no allocation) */
STATIC void s_qdiv(mp_int z, mp_size p2);
/* Quick remainder by a power of 2, replaces z (no allocation) */
STATIC void s_qmod(mp_int z, mp_size p2);
/* Quick multiplication by a power of 2, replaces z.
Allocates if necessary; returns false in case this fails. */
STATIC int s_qmul(mp_int z, mp_size p2);
/* Quick subtraction from a power of 2, replaces z.
Allocates if necessary; returns false in case this fails. */
STATIC int s_qsub(mp_int z, mp_size p2);
/* Return maximum k such that 2^k divides z. */
STATIC int s_dp2k(mp_int z);
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
STATIC int s_isp2(mp_int z);
/* Set z to 2^k. May allocate; returns false in case this fails. */
STATIC int s_2expt(mp_int z, mp_small k);
/* Normalize a and b for division, returns normalization constant */
STATIC int s_norm(mp_int a, mp_int b);
/* Compute constant mu for Barrett reduction, given modulus m, result
replaces z, m is untouched. */
STATIC mp_result s_brmu(mp_int z, mp_int m);
/* Reduce a modulo m, using Barrett's algorithm. */
STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
/* Modular exponentiation, using Barrett reduction */
STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
/* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries;
overwrites a with quotient, b with remainder. */
STATIC mp_result s_udiv_knuth(mp_int a, mp_int b);
/* Compute the number of digits in radix r required to represent the given
value. Does not account for sign flags, terminators, etc. */
STATIC int s_outlen(mp_int z, mp_size r);
/* Guess how many digits of precision will be needed to represent a radix r
value of the specified number of digits. Returns a value guaranteed to be
no smaller than the actual number required. */
STATIC mp_size s_inlen(int len, mp_size r);
/* Convert a character to a digit value in radix r, or
-1 if out of range */
STATIC int s_ch2val(char c, int r);
/* Convert a digit value to a character */
STATIC char s_val2ch(int v, int caps);
/* Take 2's complement of a buffer in place */
STATIC void s_2comp(unsigned char *buf, int len);
/* Convert a value to binary, ignoring sign. On input, *limpos is the bound on
how many bytes should be written to buf; on output, *limpos is set to the
number of bytes actually written. */
STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
#if DEBUG
/* Dump a representation of the mp_int to standard output */
void s_print(char *tag, mp_int z);
void s_print_buf(char *tag, mp_digit *buf, mp_size num);
#endif
mp_result mp_int_init(mp_int z)
{
if (z == NULL)
return MP_BADARG;
z->single = 0;
z->digits = &(z->single);
z->alloc = 1;
z->used = 1;
z->sign = MP_ZPOS;
return MP_OK;
}
mp_int mp_int_alloc(void)
{
mp_int out = malloc(sizeof(mpz_t));
if (out != NULL)
mp_int_init(out);
return out;
}
mp_result mp_int_init_size(mp_int z, mp_size prec)
{
CHECK(z != NULL);
if (prec == 0)
prec = default_precision;
else if (prec == 1)
return mp_int_init(z);
else
prec = (mp_size) ROUND_PREC(prec);
if ((MP_DIGITS(z) = s_alloc(prec)) == NULL)
return MP_MEMORY;
z->digits[0] = 0;
MP_USED(z) = 1;
MP_ALLOC(z) = prec;
MP_SIGN(z) = MP_ZPOS;
return MP_OK;
}
mp_result mp_int_init_copy(mp_int z, mp_int old)
{
mp_result res;
mp_size uold;
CHECK(z != NULL && old != NULL);
uold = MP_USED(old);
if (uold == 1) {
mp_int_init(z);
}
else {
mp_size target = MAX(uold, default_precision);
if ((res = mp_int_init_size(z, target)) != MP_OK)
return res;
}
MP_USED(z) = uold;
MP_SIGN(z) = MP_SIGN(old);
COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
return MP_OK;
}
mp_result mp_int_init_value(mp_int z, mp_small value)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_init_copy(z, &vtmp);
}
mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
s_ufake(&vtmp, uvalue, vbuf);
return mp_int_init_copy(z, &vtmp);
}
mp_result mp_int_set_value(mp_int z, mp_small value)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_copy(&vtmp, z);
}
mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
s_ufake(&vtmp, uvalue, vbuf);
return mp_int_copy(&vtmp, z);
}
void mp_int_clear(mp_int z)
{
if (z == NULL)
return;
if (MP_DIGITS(z) != NULL) {
if (MP_DIGITS(z) != &(z->single))
s_free(MP_DIGITS(z));
MP_DIGITS(z) = NULL;
}
}
void mp_int_free(mp_int z)
{
NRCHECK(z != NULL);
mp_int_clear(z);
free(z); /* note: NOT s_free() */
}
mp_result mp_int_copy(mp_int a, mp_int c)
{
CHECK(a != NULL && c != NULL);
if (a != c) {
mp_size ua = MP_USED(a);
mp_digit *da, *dc;
if (!s_pad(c, ua))
return MP_MEMORY;
da = MP_DIGITS(a); dc = MP_DIGITS(c);
COPY(da, dc, ua);
MP_USED(c) = ua;
MP_SIGN(c) = MP_SIGN(a);
}
return MP_OK;
}
void mp_int_swap(mp_int a, mp_int c)
{
if (a != c) {
mpz_t tmp = *a;
*a = *c;
*c = tmp;
if (MP_DIGITS(a) == &(c->single))
MP_DIGITS(a) = &(a->single);
if (MP_DIGITS(c) == &(a->single))
MP_DIGITS(c) = &(c->single);
}
}
void mp_int_zero(mp_int z)
{
NRCHECK(z != NULL);
z->digits[0] = 0;
MP_USED(z) = 1;
MP_SIGN(z) = MP_ZPOS;
}
mp_result mp_int_abs(mp_int a, mp_int c)
{
mp_result res;
CHECK(a != NULL && c != NULL);
if ((res = mp_int_copy(a, c)) != MP_OK)
return res;
MP_SIGN(c) = MP_ZPOS;
return MP_OK;
}
mp_result mp_int_neg(mp_int a, mp_int c)
{
mp_result res;
CHECK(a != NULL && c != NULL);
if ((res = mp_int_copy(a, c)) != MP_OK)
return res;
if (CMPZ(c) != 0)
MP_SIGN(c) = 1 - MP_SIGN(a);
return MP_OK;
}
mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
{
mp_size ua, ub, uc, max;
CHECK(a != NULL && b != NULL && c != NULL);
ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
max = MAX(ua, ub);
if (MP_SIGN(a) == MP_SIGN(b)) {
/* Same sign -- add magnitudes, preserve sign of addends */
mp_digit carry;
if (!s_pad(c, max))
return MP_MEMORY;
carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
uc = max;
if (carry) {
if (!s_pad(c, max + 1))
return MP_MEMORY;
c->digits[max] = carry;
++uc;
}
MP_USED(c) = uc;
MP_SIGN(c) = MP_SIGN(a);
}
else {
/* Different signs -- subtract magnitudes, preserve sign of greater */
mp_int x, y;
int cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
/* Set x to max(a, b), y to min(a, b) to simplify later code.
A special case yields zero for equal magnitudes.
*/
if (cmp == 0) {
mp_int_zero(c);
return MP_OK;
}
else if (cmp < 0) {
x = b; y = a;
}
else {
x = a; y = b;
}
if (!s_pad(c, MP_USED(x)))
return MP_MEMORY;
/* Subtract smaller from larger */
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
MP_USED(c) = MP_USED(x);
CLAMP(c);
/* Give result the sign of the larger */
MP_SIGN(c) = MP_SIGN(x);
}
return MP_OK;
}
mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_add(a, &vtmp, c);
}
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
{
mp_size ua, ub, uc, max;
CHECK(a != NULL && b != NULL && c != NULL);
ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
max = MAX(ua, ub);
if (MP_SIGN(a) != MP_SIGN(b)) {
/* Different signs -- add magnitudes and keep sign of a */
mp_digit carry;
if (!s_pad(c, max))
return MP_MEMORY;
carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
uc = max;
if (carry) {
if (!s_pad(c, max + 1))
return MP_MEMORY;
c->digits[max] = carry;
++uc;
}
MP_USED(c) = uc;
MP_SIGN(c) = MP_SIGN(a);
}
else {
/* Same signs -- subtract magnitudes */
mp_int x, y;
mp_sign osign;
int cmp = s_ucmp(a, b);
if (!s_pad(c, max))
return MP_MEMORY;
if (cmp >= 0) {
x = a; y = b; osign = MP_ZPOS;
}
else {
x = b; y = a; osign = MP_NEG;
}
if (MP_SIGN(a) == MP_NEG && cmp != 0)
osign = 1 - osign;
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
MP_USED(c) = MP_USED(x);
CLAMP(c);
MP_SIGN(c) = osign;
}
return MP_OK;
}
mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_sub(a, &vtmp, c);
}
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
{
mp_digit *out;
mp_size osize, ua, ub, p = 0;
mp_sign osign;
CHECK(a != NULL && b != NULL && c != NULL);
/* If either input is zero, we can shortcut multiplication */
if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) {
mp_int_zero(c);
return MP_OK;
}
/* Output is positive if inputs have same sign, otherwise negative */
osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
/* If the output is not identical to any of the inputs, we'll write the
results directly; otherwise, allocate a temporary space. */
ua = MP_USED(a); ub = MP_USED(b);
osize = MAX(ua, ub);
osize = 4 * ((osize + 1) / 2);
if (c == a || c == b) {
p = ROUND_PREC(osize);
p = MAX(p, default_precision);
if ((out = s_alloc(p)) == NULL)
return MP_MEMORY;
}
else {
if (!s_pad(c, osize))
return MP_MEMORY;
out = MP_DIGITS(c);
}
ZERO(out, osize);
if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
return MP_MEMORY;
/* If we allocated a new buffer, get rid of whatever memory c was already
using, and fix up its fields to reflect that.
*/
if (out != MP_DIGITS(c)) {
if ((void *) MP_DIGITS(c) != (void *) c)
s_free(MP_DIGITS(c));
MP_DIGITS(c) = out;
MP_ALLOC(c) = p;
}
MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
MP_SIGN(c) = osign;
return MP_OK;
}
mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_mul(a, &vtmp, c);
}
mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
{
mp_result res;
CHECK(a != NULL && c != NULL && p2 >= 0);
if ((res = mp_int_copy(a, c)) != MP_OK)
return res;
if (s_qmul(c, (mp_size) p2))
return MP_OK;
else
return MP_MEMORY;
}
mp_result mp_int_sqr(mp_int a, mp_int c)
{
mp_digit *out;
mp_size osize, p = 0;
CHECK(a != NULL && c != NULL);
/* Get a temporary buffer big enough to hold the result */
osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
if (a == c) {
p = ROUND_PREC(osize);
p = MAX(p, default_precision);
if ((out = s_alloc(p)) == NULL)
return MP_MEMORY;
}
else {
if (!s_pad(c, osize))
return MP_MEMORY;
out = MP_DIGITS(c);
}
ZERO(out, osize);
s_ksqr(MP_DIGITS(a), out, MP_USED(a));
/* Get rid of whatever memory c was already using, and fix up its fields to
reflect the new digit array it's using
*/
if (out != MP_DIGITS(c)) {
if ((void *) MP_DIGITS(c) != (void *) c)
s_free(MP_DIGITS(c));
MP_DIGITS(c) = out;
MP_ALLOC(c) = p;
}
MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
MP_SIGN(c) = MP_ZPOS;
return MP_OK;
}
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
{
int cmp, lg;
mp_result res = MP_OK;
mp_int qout, rout;
mp_sign sa = MP_SIGN(a), sb = MP_SIGN(b);
DECLARE_TEMP(2);
CHECK(a != NULL && b != NULL && q != r);
if (CMPZ(b) == 0)
return MP_UNDEF;
else if ((cmp = s_ucmp(a, b)) < 0) {
/* If |a| < |b|, no division is required:
q = 0, r = a
*/
if (r && (res = mp_int_copy(a, r)) != MP_OK)
return res;
if (q)
mp_int_zero(q);
return MP_OK;
}
else if (cmp == 0) {
/* If |a| = |b|, no division is required:
q = 1 or -1, r = 0
*/
if (r)
mp_int_zero(r);
if (q) {
mp_int_zero(q);
q->digits[0] = 1;
if (sa != sb)
MP_SIGN(q) = MP_NEG;
}
return MP_OK;
}
/* When |a| > |b|, real division is required. We need someplace to store
quotient and remainder, but q and r are allowed to be NULL or to overlap
with the inputs.
*/
if ((lg = s_isp2(b)) < 0) {
if (q && b != q) {
if ((res = mp_int_copy(a, q)) != MP_OK)
goto CLEANUP;
else
qout = q;
}
else {
qout = LAST_TEMP();
SETUP(mp_int_init_copy(LAST_TEMP(), a));
}
if (r && a != r) {
if ((res = mp_int_copy(b, r)) != MP_OK)
goto CLEANUP;
else
rout = r;
}
else {
rout = LAST_TEMP();
SETUP(mp_int_init_copy(LAST_TEMP(), b));
}
if ((res = s_udiv_knuth(qout, rout)) != MP_OK) goto CLEANUP;
}
else {
if (q && (res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP;
if (r && (res = mp_int_copy(a, r)) != MP_OK) goto CLEANUP;
if (q) s_qdiv(q, (mp_size) lg); qout = q;
if (r) s_qmod(r, (mp_size) lg); rout = r;
}
/* Recompute signs for output */
if (rout) {
MP_SIGN(rout) = sa;
if (CMPZ(rout) == 0)
MP_SIGN(rout) = MP_ZPOS;
}
if (qout) {
MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
if (CMPZ(qout) == 0)
MP_SIGN(qout) = MP_ZPOS;
}
if (q && (res = mp_int_copy(qout, q)) != MP_OK) goto CLEANUP;
if (r && (res = mp_int_copy(rout, r)) != MP_OK) goto CLEANUP;
CLEANUP_TEMP();
return res;
}
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c)
{
mp_result res;
mpz_t tmp;
mp_int out;
if (m == c) {
mp_int_init(&tmp);
out = &tmp;
}
else {
out = c;
}
if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
goto CLEANUP;
if (CMPZ(out) < 0)
res = mp_int_add(out, m, c);
else
res = mp_int_copy(out, c);
CLEANUP:
if (out != c)
mp_int_clear(&tmp);
return res;
}
mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r)
{
mpz_t vtmp, rtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
mp_result res;
mp_int_init(&rtmp);
s_fake(&vtmp, value, vbuf);
if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
goto CLEANUP;
if (r)
(void) mp_int_to_int(&rtmp, r); /* can't fail */
CLEANUP:
mp_int_clear(&rtmp);
return res;
}
mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
{
mp_result res = MP_OK;
CHECK(a != NULL && p2 >= 0 && q != r);
if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
s_qdiv(q, (mp_size) p2);
if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
s_qmod(r, (mp_size) p2);
return res;
}
mp_result mp_int_expt(mp_int a, mp_small b, mp_int c)
{
mpz_t t;
mp_result res;
unsigned int v = labs(b);
CHECK(c != NULL);
if (b < 0)
return MP_RANGE;
if ((res = mp_int_init_copy(&t, a)) != MP_OK)
return res;
(void) mp_int_set_value(c, 1);
while (v != 0) {
if (v & 1) {
if ((res = mp_int_mul(c, &t, c)) != MP_OK)
goto CLEANUP;
}
v >>= 1;
if (v == 0) break;
if ((res = mp_int_sqr(&t, &t)) != MP_OK)
goto CLEANUP;
}
CLEANUP:
mp_int_clear(&t);
return res;
}
mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
{
mpz_t t;
mp_result res;
unsigned int v = labs(b);
CHECK(c != NULL);
if (b < 0)
return MP_RANGE;
if ((res = mp_int_init_value(&t, a)) != MP_OK)
return res;
(void) mp_int_set_value(c, 1);
while (v != 0) {
if (v & 1) {
if ((res = mp_int_mul(c, &t, c)) != MP_OK)
goto CLEANUP;
}
v >>= 1;
if (v == 0) break;
if ((res = mp_int_sqr(&t, &t)) != MP_OK)
goto CLEANUP;
}
CLEANUP:
mp_int_clear(&t);
return res;
}
mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c)
{
mpz_t t;
mp_result res;
unsigned ix, jx;
CHECK(a != NULL && b != NULL && c != NULL);
if (MP_SIGN(b) == MP_NEG)
return MP_RANGE;
if ((res = mp_int_init_copy(&t, a)) != MP_OK)
return res;
(void) mp_int_set_value(c, 1);
for (ix = 0; ix < MP_USED(b); ++ix) {
mp_digit d = b->digits[ix];
for (jx = 0; jx < MP_DIGIT_BIT; ++jx) {
if (d & 1) {
if ((res = mp_int_mul(c, &t, c)) != MP_OK)
goto CLEANUP;
}
d >>= 1;
if (d == 0 && ix + 1 == MP_USED(b))
break;
if ((res = mp_int_sqr(&t, &t)) != MP_OK)
goto CLEANUP;
}
}
CLEANUP:
mp_int_clear(&t);
return res;
}
int mp_int_compare(mp_int a, mp_int b)
{
mp_sign sa;
CHECK(a != NULL && b != NULL);
sa = MP_SIGN(a);
if (sa == MP_SIGN(b)) {
int cmp = s_ucmp(a, b);
/* If they're both zero or positive, the normal comparison applies; if both
negative, the sense is reversed. */
if (sa == MP_ZPOS)
return cmp;
else
return -cmp;
}
else {
if (sa == MP_ZPOS)
return 1;
else
return -1;
}
}
int mp_int_compare_unsigned(mp_int a, mp_int b)
{
NRCHECK(a != NULL && b != NULL);
return s_ucmp(a, b);
}
int mp_int_compare_zero(mp_int z)
{
NRCHECK(z != NULL);
if (MP_USED(z) == 1 && z->digits[0] == 0)
return 0;
else if (MP_SIGN(z) == MP_ZPOS)
return 1;
else
return -1;
}
int mp_int_compare_value(mp_int z, mp_small value)
{
mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
int cmp;
CHECK(z != NULL);
if (vsign == MP_SIGN(z)) {
cmp = s_vcmp(z, value);
return (vsign == MP_ZPOS) ? cmp : -cmp;
}
else {
return (value < 0) ? 1 : -1;
}
}
int mp_int_compare_uvalue(mp_int z, mp_usmall uv)
{
CHECK(z != NULL);
if (MP_SIGN(z) == MP_NEG)
return -1;
else
return s_uvcmp(z, uv);
}
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
{
mp_result res;
mp_size um;
mp_int s;
DECLARE_TEMP(3);
CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
/* Zero moduli and negative exponents are not considered. */
if (CMPZ(m) == 0)
return MP_UNDEF;
if (CMPZ(b) < 0)
return MP_RANGE;
um = MP_USED(m);
SETUP(mp_int_init_size(TEMP(0), 2 * um));
SETUP(mp_int_init_size(TEMP(1), 2 * um));
if (c == b || c == m) {
SETUP(mp_int_init_size(TEMP(2), 2 * um));
s = TEMP(2);
}
else {
s = c;
}
if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
if ((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP;
if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
goto CLEANUP;
res = mp_int_copy(s, c);
CLEANUP_TEMP();
return res;
}
mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_exptmod(a, &vtmp, m, c);
}
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
mp_int m, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_exptmod(&vtmp, b, m, c);
}
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
{
mp_result res;
mp_size um;
mp_int s;
DECLARE_TEMP(2);
CHECK(a && b && m && c);
/* Zero moduli and negative exponents are not considered. */
if (CMPZ(m) == 0)
return MP_UNDEF;
if (CMPZ(b) < 0)
return MP_RANGE;
um = MP_USED(m);
SETUP(mp_int_init_size(TEMP(0), 2 * um));
if (c == b || c == m) {
SETUP(mp_int_init_size(TEMP(1), 2 * um));
s = TEMP(1);
}
else {
s = c;
}
if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
goto CLEANUP;
res = mp_int_copy(s, c);
CLEANUP_TEMP();
return res;
}
mp_result mp_int_redux_const(mp_int m, mp_int c)
{
CHECK(m != NULL && c != NULL && m != c);
return s_brmu(c, m);
}
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
{
mp_result res;
mp_sign sa;
DECLARE_TEMP(2);
CHECK(a != NULL && m != NULL && c != NULL);
if (CMPZ(a) == 0 || CMPZ(m) <= 0)
return MP_RANGE;
sa = MP_SIGN(a); /* need this for the result later */
for (last__ = 0; last__ < 2; ++last__)
mp_int_init(LAST_TEMP());
if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
goto CLEANUP;
if (mp_int_compare_value(TEMP(0), 1) != 0) {
res = MP_UNDEF;
goto CLEANUP;
}
/* It is first necessary to constrain the value to the proper range */
if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
goto CLEANUP;
/* Now, if 'a' was originally negative, the value we have is actually the
magnitude of the negative representative; to get the positive value we
have to subtract from the modulus. Otherwise, the value is okay as it
stands.
*/
if (sa == MP_NEG)
res = mp_int_sub(m, TEMP(1), c);
else
res = mp_int_copy(TEMP(1), c);
CLEANUP_TEMP();
return res;
}
/* Binary GCD algorithm due to Josef Stein, 1961 */
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
{
int ca, cb, k = 0;
mpz_t u, v, t;
mp_result res;
CHECK(a != NULL && b != NULL && c != NULL);
ca = CMPZ(a);
cb = CMPZ(b);
if (ca == 0 && cb == 0)
return MP_UNDEF;
else if (ca == 0)
return mp_int_abs(b, c);
else if (cb == 0)
return mp_int_abs(a, c);
mp_int_init(&t);
if ((res = mp_int_init_copy(&u, a)) != MP_OK)
goto U;
if ((res = mp_int_init_copy(&v, b)) != MP_OK)
goto V;
MP_SIGN(&u) = MP_ZPOS; MP_SIGN(&v) = MP_ZPOS;
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v);
k = MIN(div2_u, div2_v);
s_qdiv(&u, (mp_size) k);
s_qdiv(&v, (mp_size) k);
}
if (mp_int_is_odd(&u)) {
if ((res = mp_int_neg(&v, &t)) != MP_OK)
goto CLEANUP;
}
else {
if ((res = mp_int_copy(&u, &t)) != MP_OK)
goto CLEANUP;
}
for (;;) {
s_qdiv(&t, s_dp2k(&t));
if (CMPZ(&t) > 0) {
if ((res = mp_int_copy(&t, &u)) != MP_OK)
goto CLEANUP;
}
else {
if ((res = mp_int_neg(&t, &v)) != MP_OK)
goto CLEANUP;
}
if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
goto CLEANUP;
if (CMPZ(&t) == 0)
break;
}
if ((res = mp_int_abs(&u, c)) != MP_OK)
goto CLEANUP;
if (!s_qmul(c, (mp_size) k))
res = MP_MEMORY;
CLEANUP:
mp_int_clear(&v);
V: mp_int_clear(&u);
U: mp_int_clear(&t);
return res;
}
/* This is the binary GCD algorithm again, but this time we keep track of the
elementary matrix operations as we go, so we can get values x and y
satisfying c = ax + by.
*/
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
mp_int x, mp_int y)
{
int k, ca, cb;
mp_result res;
DECLARE_TEMP(8);
CHECK(a != NULL && b != NULL && c != NULL &&
(x != NULL || y != NULL));
ca = CMPZ(a);
cb = CMPZ(b);
if (ca == 0 && cb == 0)
return MP_UNDEF;
else if (ca == 0) {
if ((res = mp_int_abs(b, c)) != MP_OK) return res;
mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK;
}
else if (cb == 0) {
if ((res = mp_int_abs(a, c)) != MP_OK) return res;
(void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK;
}
/* Initialize temporaries:
A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
for (last__ = 0; last__ < 4; ++last__)
mp_int_init(LAST_TEMP());
TEMP(0)->digits[0] = 1;
TEMP(3)->digits[0] = 1;
SETUP(mp_int_init_copy(TEMP(4), a));
SETUP(mp_int_init_copy(TEMP(5), b));
/* We will work with absolute values here */
MP_SIGN(TEMP(4)) = MP_ZPOS;
MP_SIGN(TEMP(5)) = MP_ZPOS;
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
k = MIN(div2_u, div2_v);
s_qdiv(TEMP(4), k);
s_qdiv(TEMP(5), k);
}
SETUP(mp_int_init_copy(TEMP(6), TEMP(4)));
SETUP(mp_int_init_copy(TEMP(7), TEMP(5)));
for (;;) {
while (mp_int_is_even(TEMP(4))) {
s_qdiv(TEMP(4), 1);
if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
goto CLEANUP;
if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
goto CLEANUP;
}
s_qdiv(TEMP(0), 1);
s_qdiv(TEMP(1), 1);
}
while (mp_int_is_even(TEMP(5))) {
s_qdiv(TEMP(5), 1);
if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
goto CLEANUP;
if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
goto CLEANUP;
}
s_qdiv(TEMP(2), 1);
s_qdiv(TEMP(3), 1);
}
if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP;
if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP;
if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP;
}
else {
if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP;
if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP;
if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK) goto CLEANUP;
}
if (CMPZ(TEMP(4)) == 0) {
if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK) goto CLEANUP;
if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK) goto CLEANUP;
if (c) {
if (!s_qmul(TEMP(5), k)) {
res = MP_MEMORY;
goto CLEANUP;
}
res = mp_int_copy(TEMP(5), c);
}
break;
}
}
CLEANUP_TEMP();
return res;
}
mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c)
{
mpz_t lcm;
mp_result res;
CHECK(a != NULL && b != NULL && c != NULL);
/* Since a * b = gcd(a, b) * lcm(a, b), we can compute
lcm(a, b) = (a / gcd(a, b)) * b.
This formulation insures everything works even if the input
variables share space.
*/
if ((res = mp_int_init(&lcm)) != MP_OK)
return res;
if ((res = mp_int_gcd(a, b, &lcm)) != MP_OK)
goto CLEANUP;
if ((res = mp_int_div(a, &lcm, &lcm, NULL)) != MP_OK)
goto CLEANUP;
if ((res = mp_int_mul(&lcm, b, &lcm)) != MP_OK)
goto CLEANUP;
res = mp_int_copy(&lcm, c);
CLEANUP:
mp_int_clear(&lcm);
return res;
}
int mp_int_divisible_value(mp_int a, mp_small v)
{
mp_small rem = 0;
if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
return 0;
return rem == 0;
}
int mp_int_is_pow2(mp_int z)
{
CHECK(z != NULL);
return s_isp2(z);
}
/* Implementation of Newton's root finding method, based loosely on a patch
contributed by Hal Finkel <[email protected]>
modified by M. J. Fromberger.
*/
mp_result mp_int_root(mp_int a, mp_small b, mp_int c)
{
mp_result res = MP_OK;
int flips = 0;
DECLARE_TEMP(5);
CHECK(a != NULL && c != NULL && b > 0);
if (b == 1) {
return mp_int_copy(a, c);
}
if (MP_SIGN(a) == MP_NEG) {
if (b % 2 == 0)
return MP_UNDEF; /* root does not exist for negative a with even b */
else
flips = 1;
}
SETUP(mp_int_init_copy(LAST_TEMP(), a));
SETUP(mp_int_init_copy(LAST_TEMP(), a));
SETUP(mp_int_init(LAST_TEMP()));
SETUP(mp_int_init(LAST_TEMP()));
SETUP(mp_int_init(LAST_TEMP()));
(void) mp_int_abs(TEMP(0), TEMP(0));
(void) mp_int_abs(TEMP(1), TEMP(1));
for (;;) {
if ((res = mp_int_expt(TEMP(1), b, TEMP(2))) != MP_OK)
goto CLEANUP;
if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
break;
if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
goto CLEANUP;
if ((res = mp_int_expt(TEMP(1), b - 1, TEMP(3))) != MP_OK)
goto CLEANUP;
if ((res = mp_int_mul_value(TEMP(3), b, TEMP(3))) != MP_OK)
goto CLEANUP;
if ((res = mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)) != MP_OK)
goto CLEANUP;
if ((res = mp_int_sub(TEMP(1), TEMP(4), TEMP(4))) != MP_OK)
goto CLEANUP;
if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) {
if ((res = mp_int_sub_value(TEMP(4), 1, TEMP(4))) != MP_OK)
goto CLEANUP;
}
if ((res = mp_int_copy(TEMP(4), TEMP(1))) != MP_OK)
goto CLEANUP;
}
if ((res = mp_int_copy(TEMP(1), c)) != MP_OK)
goto CLEANUP;
/* If the original value of a was negative, flip the output sign. */
if (flips)
(void) mp_int_neg(c, c); /* cannot fail */
CLEANUP_TEMP();
return res;
}
mp_result mp_int_to_int(mp_int z, mp_small *out)
{
mp_usmall uv = 0;
mp_size uz;
mp_digit *dz;
mp_sign sz;
CHECK(z != NULL);
/* Make sure the value is representable as a small integer */
sz = MP_SIGN(z);
if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
mp_int_compare_value(z, MP_SMALL_MIN) < 0)
return MP_RANGE;
uz = MP_USED(z);
dz = MP_DIGITS(z) + uz - 1;
while (uz > 0) {
uv <<= MP_DIGIT_BIT/2;
uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
--uz;
}
if (out)
*out = (mp_small)((sz == MP_NEG) ? -uv : uv);
return MP_OK;
}
mp_result mp_int_to_uint(mp_int z, mp_usmall *out)
{
mp_usmall uv = 0;
mp_size uz;
mp_digit *dz;
mp_sign sz;
CHECK(z != NULL);
/* Make sure the value is representable as an unsigned small integer */
sz = MP_SIGN(z);
if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0)
return MP_RANGE;
uz = MP_USED(z);
dz = MP_DIGITS(z) + uz - 1;
while (uz > 0) {
uv <<= MP_DIGIT_BIT/2;
uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
--uz;
}
if (out)
*out = uv;
return MP_OK;
}
mp_result mp_int_to_string(mp_int z, mp_size radix,
char *str, int limit)
{
mp_result res;
int cmp = 0;
CHECK(z != NULL && str != NULL && limit >= 2);
if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
return MP_RANGE;
if (CMPZ(z) == 0) {
*str++ = s_val2ch(0, 1);
}
else {
mpz_t tmp;
char *h, *t;
if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
return res;
if (MP_SIGN(z) == MP_NEG) {
*str++ = '-';
--limit;
}
h = str;
/* Generate digits in reverse order until finished or limit reached */
for (/* */; limit > 0; --limit) {
mp_digit d;
if ((cmp = CMPZ(&tmp)) == 0)
break;
d = s_ddiv(&tmp, (mp_digit)radix);
*str++ = s_val2ch(d, 1);
}
t = str - 1;
/* Put digits back in correct output order */
while (h < t) {
char tc = *h;
*h++ = *t;
*t-- = tc;
}
mp_int_clear(&tmp);
}
*str = '\0';
if (cmp == 0)
return MP_OK;
else
return MP_TRUNC;
}
mp_result mp_int_string_len(mp_int z, mp_size radix)
{
int len;
CHECK(z != NULL);
if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
return MP_RANGE;
len = s_outlen(z, radix) + 1; /* for terminator */
/* Allow for sign marker on negatives */
if (MP_SIGN(z) == MP_NEG)
len += 1;
return len;
}
/* Read zero-terminated string into z */
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str)
{
return mp_int_read_cstring(z, radix, str, NULL);
}
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
{
int ch;
CHECK(z != NULL && str != NULL);
if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
return MP_RANGE;
/* Skip leading whitespace */
while (isspace((int)*str))
++str;
/* Handle leading sign tag (+/-, positive default) */
switch (*str) {
case '-':
MP_SIGN(z) = MP_NEG;
++str;
break;
case '+':
++str; /* fallthrough */
default:
MP_SIGN(z) = MP_ZPOS;
break;
}
/* Skip leading zeroes */
while ((ch = s_ch2val(*str, radix)) == 0)
++str;
/* Make sure there is enough space for the value */
if (!s_pad(z, s_inlen(strlen(str), radix)))
return MP_MEMORY;
MP_USED(z) = 1; z->digits[0] = 0;
while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) {
s_dmul(z, (mp_digit)radix);
s_dadd(z, (mp_digit)ch);
++str;
}
CLAMP(z);
/* Override sign for zero, even if negative specified. */
if (CMPZ(z) == 0)
MP_SIGN(z) = MP_ZPOS;
if (end != NULL)
*end = (char *)str;
/* Return a truncation error if the string has unprocessed characters
remaining, so the caller can tell if the whole string was done */
if (*str != '\0')
return MP_TRUNC;
else
return MP_OK;
}
mp_result mp_int_count_bits(mp_int z)
{
mp_size nbits = 0, uz;
mp_digit d;
CHECK(z != NULL);
uz = MP_USED(z);
if (uz == 1 && z->digits[0] == 0)
return 1;
--uz;
nbits = uz * MP_DIGIT_BIT;
d = z->digits[uz];
while (d != 0) {
d >>= 1;
++nbits;
}
return nbits;
}
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
{
static const int PAD_FOR_2C = 1;
mp_result res;
int limpos = limit;
CHECK(z != NULL && buf != NULL);
res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
if (MP_SIGN(z) == MP_NEG)
s_2comp(buf, limpos);
return res;
}
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
{
mp_size need, i;
unsigned char *tmp;
mp_digit *dz;
CHECK(z != NULL && buf != NULL && len > 0);
/* Figure out how many digits are needed to represent this value */
need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
if (!s_pad(z, need))
return MP_MEMORY;
mp_int_zero(z);
/* If the high-order bit is set, take the 2's complement before reading the
value (it will be restored afterward) */
if (buf[0] >> (CHAR_BIT - 1)) {
MP_SIGN(z) = MP_NEG;
s_2comp(buf, len);
}
dz = MP_DIGITS(z);
for (tmp = buf, i = len; i > 0; --i, ++tmp) {
s_qmul(z, (mp_size) CHAR_BIT);
*dz |= *tmp;
}
/* Restore 2's complement if we took it before */
if (MP_SIGN(z) == MP_NEG)
s_2comp(buf, len);
return MP_OK;
}
mp_result mp_int_binary_len(mp_int z)
{
mp_result res = mp_int_count_bits(z);
int bytes = mp_int_unsigned_len(z);
if (res <= 0)
return res;
bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
/* If the highest-order bit falls exactly on a byte boundary, we need to pad
with an extra byte so that the sign will be read correctly when reading it
back in. */
if (bytes * CHAR_BIT == res)
++bytes;
return bytes;
}
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
{
static const int NO_PADDING = 0;
CHECK(z != NULL && buf != NULL);
return s_tobin(z, buf, &limit, NO_PADDING);
}
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
{
mp_size need, i;
unsigned char *tmp;
CHECK(z != NULL && buf != NULL && len > 0);
/* Figure out how many digits are needed to represent this value */
need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
if (!s_pad(z, need))
return MP_MEMORY;
mp_int_zero(z);
for (tmp = buf, i = len; i > 0; --i, ++tmp) {
(void) s_qmul(z, CHAR_BIT);
*MP_DIGITS(z) |= *tmp;
}
return MP_OK;
}
mp_result mp_int_unsigned_len(mp_int z)
{
mp_result res = mp_int_count_bits(z);
int bytes;
if (res <= 0)
return res;
bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
return bytes;
}
const char *mp_error_string(mp_result res)
{
int ix;
if (res > 0)
return s_unknown_err;
res = -res;
for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
;
if (s_error_msg[ix] != NULL)
return s_error_msg[ix];
else
return s_unknown_err;
}
/*------------------------------------------------------------------------*/
/* Private functions for internal use. These make assumptions. */
STATIC mp_digit *s_alloc(mp_size num)
{
mp_digit *out = malloc(num * sizeof(mp_digit));
assert(out != NULL); /* for debugging */
#if DEBUG > 1
{
mp_digit v = (mp_digit) 0xdeadbeef;
int ix;
for (ix = 0; ix < num; ++ix)
out[ix] = v;
}
#endif
return out;
}
STATIC mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
{
#if DEBUG > 1
mp_digit *new = s_alloc(nsize);
int ix;
for (ix = 0; ix < nsize; ++ix)
new[ix] = (mp_digit) 0xdeadbeef;
memcpy(new, old, osize * sizeof(mp_digit));
#else
mp_digit *new = realloc(old, nsize * sizeof(mp_digit));
assert(new != NULL); /* for debugging */
#endif
return new;
}
STATIC void s_free(void *ptr)
{
free(ptr);
}
STATIC int s_pad(mp_int z, mp_size min)
{
if (MP_ALLOC(z) < min) {
mp_size nsize = ROUND_PREC(min);
mp_digit *tmp;
if ((void *)z->digits == (void *)z) {
if ((tmp = s_alloc(nsize)) == NULL)
return 0;
COPY(MP_DIGITS(z), tmp, MP_USED(z));
}
else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
return 0;
MP_DIGITS(z) = tmp;
MP_ALLOC(z) = nsize;
}
return 1;
}
/* Note: This will not work correctly when value == MP_SMALL_MIN */
STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[])
{
mp_usmall uv = (mp_usmall) (value < 0) ? -value : value;
s_ufake(z, uv, vbuf);
if (value < 0)
z->sign = MP_NEG;
}
STATIC void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[])
{
mp_size ndig = (mp_size) s_uvpack(value, vbuf);
z->used = ndig;
z->alloc = MP_VALUE_DIGITS(value);
z->sign = MP_ZPOS;
z->digits = vbuf;
}
STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len)
{
mp_digit *dat = da + len - 1, *dbt = db + len - 1;
for (/* */; len != 0; --len, --dat, --dbt) {
if (*dat > *dbt)
return 1;
else if (*dat < *dbt)
return -1;
}
return 0;
}
STATIC int s_uvpack(mp_usmall uv, mp_digit t[])
{
int ndig = 0;
if (uv == 0)
t[ndig++] = 0;
else {
while (uv != 0) {
t[ndig++] = (mp_digit) uv;
uv >>= MP_DIGIT_BIT/2;
uv >>= MP_DIGIT_BIT/2;
}
}
return ndig;
}
STATIC int s_ucmp(mp_int a, mp_int b)
{
mp_size ua = MP_USED(a), ub = MP_USED(b);
if (ua > ub)
return 1;
else if (ub > ua)
return -1;
else
return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
}
STATIC int s_vcmp(mp_int a, mp_small v)
{
mp_usmall uv = (v < 0) ? -(mp_usmall) v : (mp_usmall) v;
return s_uvcmp(a, uv);
}
STATIC int s_uvcmp(mp_int a, mp_usmall uv)
{
mpz_t vtmp;
mp_digit vdig[MP_VALUE_DIGITS(uv)];
s_ufake(&vtmp, uv, vdig);
return s_ucmp(a, &vtmp);
}
STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size pos;
mp_word w = 0;
/* Insure that da is the longer of the two to simplify later code */
if (size_b > size_a) {
SWAP(mp_digit *, da, db);
SWAP(mp_size, size_a, size_b);
}
/* Add corresponding digits until the shorter number runs out */
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
w = w + (mp_word) *da + (mp_word) *db;
*dc = LOWER_HALF(w);
w = UPPER_HALF(w);
}
/* Propagate carries as far as necessary */
for (/* */; pos < size_a; ++pos, ++da, ++dc) {
w = w + *da;
*dc = LOWER_HALF(w);
w = UPPER_HALF(w);
}
/* Return carry out */
return (mp_digit)w;
}
STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size pos;
mp_word w = 0;
/* We assume that |a| >= |b| so this should definitely hold */
assert(size_a >= size_b);
/* Subtract corresponding digits and propagate borrow */
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
(mp_word)*da) - w - (mp_word)*db;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
}
/* Finish the subtraction for remaining upper digits of da */
for (/* */; pos < size_a; ++pos, ++da, ++dc) {
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
(mp_word)*da) - w;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
}
/* If there is a borrow out at the end, it violates the precondition */
assert(w == 0);
}
STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size bot_size;
/* Make sure b is the smaller of the two input values */
if (size_b > size_a) {
SWAP(mp_digit *, da, db);
SWAP(mp_size, size_a, size_b);
}
/* Insure that the bottom is the larger half in an odd-length split; the code
below relies on this being true.
*/
bot_size = (size_a + 1) / 2;
/* If the values are big enough to bother with recursion, use the Karatsuba
algorithm to compute the product; otherwise use the normal multiplication
algorithm
*/
if (multiply_threshold &&
size_a >= multiply_threshold &&
size_b > bot_size) {
mp_digit *t1, *t2, *t3, carry;
mp_digit *a_top = da + bot_size;
mp_digit *b_top = db + bot_size;
mp_size at_size = size_a - bot_size;
mp_size bt_size = size_b - bot_size;
mp_size buf_size = 2 * bot_size;
/* Do a single allocation for all three temporary buffers needed; each
buffer must be big enough to hold the product of two bottom halves, and
one buffer needs space for the completed product; twice the space is
plenty.
*/
if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
t2 = t1 + buf_size;
t3 = t2 + buf_size;
ZERO(t1, 4 * buf_size);
/* t1 and t2 are initially used as temporaries to compute the inner product
(a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
*/
carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
t1[bot_size] = carry;
carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
t2[bot_size] = carry;
(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
/* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
we're left with only the pieces we want: t3 = a1b0 + a0b1
*/
ZERO(t1, buf_size);
ZERO(t2, buf_size);
(void) s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */
(void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
/* Subtract out t1 and t2 to get the inner product */
s_usub(t3, t1, t3, buf_size + 2, buf_size);
s_usub(t3, t2, t3, buf_size + 2, buf_size);
/* Assemble the output value */
COPY(t1, dc, buf_size);
carry = s_uadd(t3, dc + bot_size, dc + bot_size,
buf_size + 1, buf_size);
assert(carry == 0);
carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
buf_size, buf_size);
assert(carry == 0);
s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
}
else {
s_umul(da, db, dc, size_a, size_b);
}
return 1;
}
STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size a, b;
mp_word w;
for (a = 0; a < size_a; ++a, ++dc, ++da) {
mp_digit *dct = dc;
mp_digit *dbt = db;
if (*da == 0)
continue;
w = 0;
for (b = 0; b < size_b; ++b, ++dbt, ++dct) {
w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
*dct = LOWER_HALF(w);
w = UPPER_HALF(w);
}
*dct = (mp_digit)w;
}
}
STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
{
if (multiply_threshold && size_a > multiply_threshold) {
mp_size bot_size = (size_a + 1) / 2;
mp_digit *a_top = da + bot_size;
mp_digit *t1, *t2, *t3, carry;
mp_size at_size = size_a - bot_size;
mp_size buf_size = 2 * bot_size;
if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
t2 = t1 + buf_size;
t3 = t2 + buf_size;
ZERO(t1, 4 * buf_size);
(void) s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */
(void) s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */
(void) s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */
/* Quick multiply t3 by 2, shifting left (can't overflow) */
{
int i, top = bot_size + at_size;
mp_word w, save = 0;
for (i = 0; i < top; ++i) {
w = t3[i];
w = (w << 1) | save;
t3[i] = LOWER_HALF(w);
save = UPPER_HALF(w);
}
t3[i] = LOWER_HALF(save);
}
/* Assemble the output value */
COPY(t1, dc, 2 * bot_size);
carry = s_uadd(t3, dc + bot_size, dc + bot_size,
buf_size + 1, buf_size);
assert(carry == 0);
carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
buf_size, buf_size);
assert(carry == 0);
s_free(t1); /* note that t2 and t2 are internal pointers only */
}
else {
s_usqr(da, dc, size_a);
}
return 1;
}
STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
{
mp_size i, j;
mp_word w;
for (i = 0; i < size_a; ++i, dc += 2, ++da) {
mp_digit *dct = dc, *dat = da;
if (*da == 0)
continue;
/* Take care of the first digit, no rollover */
w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
*dct = LOWER_HALF(w);
w = UPPER_HALF(w);
++dat; ++dct;
for (j = i + 1; j < size_a; ++j, ++dat, ++dct) {
mp_word t = (mp_word)*da * (mp_word)*dat;
mp_word u = w + (mp_word)*dct, ov = 0;
/* Check if doubling t will overflow a word */
if (HIGH_BIT_SET(t))
ov = 1;
w = t + t;
/* Check if adding u to w will overflow a word */
if (ADD_WILL_OVERFLOW(w, u))
ov = 1;
w += u;
*dct = LOWER_HALF(w);
w = UPPER_HALF(w);
if (ov) {
w += MP_DIGIT_MAX; /* MP_RADIX */
++w;
}
}
w = w + *dct;
*dct = (mp_digit)w;
while ((w = UPPER_HALF(w)) != 0) {
++dct; w = w + *dct;
*dct = LOWER_HALF(w);
}
assert(w == 0);
}
}
STATIC void s_dadd(mp_int a, mp_digit b)
{
mp_word w = 0;
mp_digit *da = MP_DIGITS(a);
mp_size ua = MP_USED(a);
w = (mp_word)*da + b;
*da++ = LOWER_HALF(w);
w = UPPER_HALF(w);
for (ua -= 1; ua > 0; --ua, ++da) {
w = (mp_word)*da + w;
*da = LOWER_HALF(w);
w = UPPER_HALF(w);
}
if (w) {
*da = (mp_digit)w;
MP_USED(a) += 1;
}
}
STATIC void s_dmul(mp_int a, mp_digit b)
{
mp_word w = 0;
mp_digit *da = MP_DIGITS(a);
mp_size ua = MP_USED(a);
while (ua > 0) {
w = (mp_word)*da * b + w;
*da++ = LOWER_HALF(w);
w = UPPER_HALF(w);
--ua;
}
if (w) {
*da = (mp_digit)w;
MP_USED(a) += 1;
}
}
STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
{
mp_word w = 0;
while (size_a > 0) {
w = (mp_word)*da++ * (mp_word)b + w;
*dc++ = LOWER_HALF(w);
w = UPPER_HALF(w);
--size_a;
}
if (w)
*dc = LOWER_HALF(w);
}
STATIC mp_digit s_ddiv(mp_int a, mp_digit b)
{
mp_word w = 0, qdigit;
mp_size ua = MP_USED(a);
mp_digit *da = MP_DIGITS(a) + ua - 1;
for (/* */; ua > 0; --ua, --da) {
w = (w << MP_DIGIT_BIT) | *da;
if (w >= b) {
qdigit = w / b;
w = w % b;
}
else {
qdigit = 0;
}
*da = (mp_digit)qdigit;
}
CLAMP(a);
return (mp_digit)w;
}
STATIC void s_qdiv(mp_int z, mp_size p2)
{
mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
if (ndig) {
mp_size mark;
mp_digit *to, *from;
if (ndig >= uz) {
mp_int_zero(z);
return;
}
to = MP_DIGITS(z); from = to + ndig;
for (mark = ndig; mark < uz; ++mark)
*to++ = *from++;
MP_USED(z) = uz - ndig;
}
if (nbits) {
mp_digit d = 0, *dz, save;
mp_size up = MP_DIGIT_BIT - nbits;
uz = MP_USED(z);
dz = MP_DIGITS(z) + uz - 1;
for (/* */; uz > 0; --uz, --dz) {
save = *dz;
*dz = (*dz >> nbits) | (d << up);
d = save;
}
CLAMP(z);
}
if (MP_USED(z) == 1 && z->digits[0] == 0)
MP_SIGN(z) = MP_ZPOS;
}
STATIC void s_qmod(mp_int z, mp_size p2)
{
mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
mp_digit mask = (1u << rest) - 1;
if (start <= uz) {
MP_USED(z) = start;
z->digits[start - 1] &= mask;
CLAMP(z);
}
}
STATIC int s_qmul(mp_int z, mp_size p2)
{
mp_size uz, need, rest, extra, i;
mp_digit *from, *to, d;
if (p2 == 0)
return 1;
uz = MP_USED(z);
need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT;
/* Figure out if we need an extra digit at the top end; this occurs if the
topmost `rest' bits of the high-order digit of z are not zero, meaning
they will be shifted off the end if not preserved */
extra = 0;
if (rest != 0) {
mp_digit *dz = MP_DIGITS(z) + uz - 1;
if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
extra = 1;
}
if (!s_pad(z, uz + need + extra))
return 0;
/* If we need to shift by whole digits, do that in one pass, then
to back and shift by partial digits.
*/
if (need > 0) {
from = MP_DIGITS(z) + uz - 1;
to = from + need;
for (i = 0; i < uz; ++i)
*to-- = *from--;
ZERO(MP_DIGITS(z), need);
uz += need;
}
if (rest) {
d = 0;
for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
mp_digit save = *from;
*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
d = save;
}
d >>= (MP_DIGIT_BIT - rest);
if (d != 0) {
*from = d;
uz += extra;
}
}
MP_USED(z) = uz;
CLAMP(z);
return 1;
}
/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
The sign of the result is always zero/positive.
*/
STATIC int s_qsub(mp_int z, mp_size p2)
{
mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp;
mp_size tdig = (p2 / MP_DIGIT_BIT), pos;
mp_word w = 0;
if (!s_pad(z, tdig + 1))
return 0;
for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
*zp = LOWER_HALF(w);
w = UPPER_HALF(w) ? 0 : 1;
}
w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
*zp = LOWER_HALF(w);
assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
MP_SIGN(z) = MP_ZPOS;
CLAMP(z);
return 1;
}
STATIC int s_dp2k(mp_int z)
{
int k = 0;
mp_digit *dp = MP_DIGITS(z), d;
if (MP_USED(z) == 1 && *dp == 0)
return 1;
while (*dp == 0) {
k += MP_DIGIT_BIT;
++dp;
}
d = *dp;
while ((d & 1) == 0) {
d >>= 1;
++k;
}
return k;
}
STATIC int s_isp2(mp_int z)
{
mp_size uz = MP_USED(z), k = 0;
mp_digit *dz = MP_DIGITS(z), d;
while (uz > 1) {
if (*dz++ != 0)
return -1;
k += MP_DIGIT_BIT;
--uz;
}
d = *dz;
while (d > 1) {
if (d & 1)
return -1;
++k; d >>= 1;
}
return (int) k;
}
STATIC int s_2expt(mp_int z, mp_small k)
{
mp_size ndig, rest;
mp_digit *dz;
ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
rest = k % MP_DIGIT_BIT;
if (!s_pad(z, ndig))
return 0;
dz = MP_DIGITS(z);
ZERO(dz, ndig);
*(dz + ndig - 1) = (1 << rest);
MP_USED(z) = ndig;
return 1;
}
STATIC int s_norm(mp_int a, mp_int b)
{
mp_digit d = b->digits[MP_USED(b) - 1];
int k = 0;
while (d < (1u << (mp_digit)(MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
d <<= 1;
++k;
}
/* These multiplications can't fail */
if (k != 0) {
(void) s_qmul(a, (mp_size) k);
(void) s_qmul(b, (mp_size) k);
}
return k;
}
STATIC mp_result s_brmu(mp_int z, mp_int m)
{
mp_size um = MP_USED(m) * 2;
if (!s_pad(z, um))
return MP_MEMORY;
s_2expt(z, MP_DIGIT_BIT * um);
return mp_int_div(z, m, z, NULL);
}
STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
{
mp_size um = MP_USED(m), umb_p1, umb_m1;
umb_p1 = (um + 1) * MP_DIGIT_BIT;
umb_m1 = (um - 1) * MP_DIGIT_BIT;
if (mp_int_copy(x, q1) != MP_OK)
return 0;
/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
s_qdiv(q1, umb_m1);
UMUL(q1, mu, q2);
s_qdiv(q2, umb_p1);
/* Set x = x mod b^(k+1) */
s_qmod(x, umb_p1);
/* Now, q is a guess for the quotient a / m.
Compute x - q * m mod b^(k+1), replacing x. This may be off
by a factor of 2m, but no more than that.
*/
UMUL(q2, m, q1);
s_qmod(q1, umb_p1);
(void) mp_int_sub(x, q1, x); /* can't fail */
/* The result may be < 0; if it is, add b^(k+1) to pin it in the proper
range. */
if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
return 0;
/* If x > m, we need to back it off until it is in range. This will be
required at most twice. */
if (mp_int_compare(x, m) >= 0) {
(void) mp_int_sub(x, m, x);
if (mp_int_compare(x, m) >= 0)
(void) mp_int_sub(x, m, x);
}
/* At this point, x has been properly reduced. */
return 1;
}
/* Perform modular exponentiation using Barrett's method, where mu is the
reduction constant for m. Assumes a < m, b > 0. */
STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
{
mp_digit *db, *dbt, umu, d;
mp_result res;
DECLARE_TEMP(3);
umu = MP_USED(mu); db = MP_DIGITS(b); dbt = db + MP_USED(b) - 1;
while (last__ < 3) {
SETUP(mp_int_init_size(LAST_TEMP(), 4 * umu));
ZERO(MP_DIGITS(TEMP(last__ - 1)), MP_ALLOC(TEMP(last__ - 1)));
}
(void) mp_int_set_value(c, 1);
/* Take care of low-order digits */
while (db < dbt) {
int i;
for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
if (d & 1) {
/* The use of a second temporary avoids allocation */
UMUL(c, a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
res = MP_MEMORY; goto CLEANUP;
}
mp_int_copy(TEMP(0), c);
}
USQR(a, TEMP(0));
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
res = MP_MEMORY; goto CLEANUP;
}
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
mp_int_copy(TEMP(0), a);
}
++db;
}
/* Take care of highest-order digit */
d = *dbt;
for (;;) {
if (d & 1) {
UMUL(c, a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
res = MP_MEMORY; goto CLEANUP;
}
mp_int_copy(TEMP(0), c);
}
d >>= 1;
if (!d) break;
USQR(a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
res = MP_MEMORY; goto CLEANUP;
}
(void) mp_int_copy(TEMP(0), a);
}
CLEANUP_TEMP();
return res;
}
/* Division of nonnegative integers
This function implements division algorithm for unsigned multi-precision
integers. The algorithm is based on Algorithm D from Knuth's "The Art of
Computer Programming", 3rd ed. 1998, pg 272-273.
We diverge from Knuth's algorithm in that we do not perform the subtraction
from the remainder until we have determined that we have the correct
quotient digit. This makes our algorithm less efficient that Knuth because
we might have to perform multiple multiplication and comparison steps before
the subtraction. The advantage is that it is easy to implement and ensure
correctness without worrying about underflow from the subtraction.
inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
v a n digit integer in base b (b is 2^MP_DIGIT_BIT)
n >= 1
m >= 0
outputs: u / v stored in u
u % v stored in v
*/
STATIC mp_result s_udiv_knuth(mp_int u, mp_int v) {
mpz_t q, r, t;
mp_result
res = MP_OK;
int k,j;
mp_size m,n;
/* Force signs to positive */
MP_SIGN(u) = MP_ZPOS;
MP_SIGN(v) = MP_ZPOS;
/* Use simple division algorithm when v is only one digit long */
if (MP_USED(v) == 1) {
mp_digit d, rem;
d = v->digits[0];
rem = s_ddiv(u, d);
mp_int_set_value(v, rem);
return MP_OK;
}
/* Algorithm D
The n and m variables are defined as used by Knuth.
u is an n digit number with digits u_{n-1}..u_0.
v is an n+m digit number with digits from v_{m+n-1}..v_0.
We require that n > 1 and m >= 0
*/
n = MP_USED(v);
m = MP_USED(u) - n;
assert(n > 1);
assert(m >= 0);
/* D1: Normalize.
The normalization step provides the necessary condition for Theorem B,
which states that the quotient estimate for q_j, call it qhat
qhat = u_{j+n}u_{j+n-1} / v_{n-1}
is bounded by
qhat - 2 <= q_j <= qhat.
That is, qhat is always greater than the actual quotient digit q,
and it is never more than two larger than the actual quotient digit.
*/
k = s_norm(u, v);
/* Extend size of u by one if needed.
The algorithm begins with a value of u that has one more digit of input.
The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the
multiplication did not increase the number of digits of u, we need to add
a leading zero here.
*/
if (k == 0 || MP_USED(u) != m + n + 1) {
if (!s_pad(u, m+n+1))
return MP_MEMORY;
u->digits[m+n] = 0;
u->used = m+n+1;
}
/* Add a leading 0 to v.
The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to
add the leading zero to v here to ensure that the multiplication will
produce the full n+1 digit result.
*/
if (!s_pad(v, n+1)) return MP_MEMORY; v->digits[n] = 0;
/* Initialize temporary variables q and t.
q allocates space for m+1 digits to store the quotient digits
t allocates space for n+1 digits to hold the result of q_j*v
*/
if ((res = mp_int_init_size(&q, m + 1)) != MP_OK) return res;
if ((res = mp_int_init_size(&t, n + 1)) != MP_OK) goto CLEANUP;
/* D2: Initialize j */
j = m;
r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */
r.used = n + 1;
r.sign = MP_ZPOS;
r.alloc = MP_ALLOC(u);
ZERO(t.digits, t.alloc);
/* Calculate the m+1 digits of the quotient result */
for (; j >= 0; j--) {
/* D3: Calculate q' */
/* r->digits is aligned to position j of the number u */
mp_word pfx, qhat;
pfx = r.digits[n];
pfx <<= MP_DIGIT_BIT / 2;
pfx <<= MP_DIGIT_BIT / 2;
pfx |= r.digits[n-1]; /* pfx = u_{j+n}{j+n-1} */
qhat = pfx / v->digits[n-1];
/* Check to see if qhat > b, and decrease qhat if so.
Theorem B guarantess that qhat is at most 2 larger than the
actual value, so it is possible that qhat is greater than
the maximum value that will fit in a digit */
if (qhat > MP_DIGIT_MAX)
qhat = MP_DIGIT_MAX;
/* D4,D5,D6: Multiply qhat * v and test for a correct value of q
We proceed a bit different than the way described by Knuth. This way is
simpler but less efficent. Instead of doing the multiply and subtract
then checking for underflow, we first do the multiply of qhat * v and
see if it is larger than the current remainder r. If it is larger, we
decrease qhat by one and try again. We may need to decrease qhat one
more time before we get a value that is smaller than r.
This way is less efficent than Knuth becuase we do more multiplies, but
we do not need to worry about underflow this way.
*/
/* t = qhat * v */
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1); t.used = n + 1;
CLAMP(&t);
/* Clamp r for the comparison. Comparisons do not like leading zeros. */
CLAMP(&r);
if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */
qhat -= 1; /* try a smaller q */
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1);
t.used = n + 1; CLAMP(&t);
if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */
assert(qhat > 0);
qhat -= 1; /* try a smaller q */
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1);
t.used = n + 1; CLAMP(&t);
}
assert(s_ucmp(&t, &r) <= 0 && "The mathematics failed us.");
}
/* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1
digits long. */
r.used = n + 1;
/* D4: Multiply and subtract
Note: The multiply was completed above so we only need to subtract here.
*/
s_usub(r.digits, t.digits, r.digits, r.used, t.used);
/* D5: Test remainder
Note: Not needed because we always check that qhat is the correct value
before performing the subtract. Value cast to mp_digit to prevent
warning, qhat has been clamped to MP_DIGIT_MAX
*/
q.digits[j] = (mp_digit)qhat;
/* D6: Add back
Note: Not needed because we always check that qhat is the correct value
before performing the subtract.
*/
/* D7: Loop on j */
r.digits--;
ZERO(t.digits, t.alloc);
}
/* Get rid of leading zeros in q */
q.used = m + 1;
CLAMP(&q);
/* Denormalize the remainder */
CLAMP(u); /* use u here because the r.digits pointer is off-by-one */
if (k != 0)
s_qdiv(u, k);
mp_int_copy(u, v); /* ok: 0 <= r < v */
mp_int_copy(&q, u); /* ok: q <= u */
mp_int_clear(&t);
CLEANUP:
mp_int_clear(&q);
return res;
}
STATIC int s_outlen(mp_int z, mp_size r)
{
mp_result bits;
double raw;
assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
bits = mp_int_count_bits(z);
raw = (double)bits * s_log2[r];
return (int)(raw + 0.999999);
}
STATIC mp_size s_inlen(int len, mp_size r)
{
double raw = (double)len / s_log2[r];
mp_size bits = (mp_size)(raw + 0.5);
return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
}
STATIC int s_ch2val(char c, int r)
{
int out;
if (isdigit((unsigned char) c))
out = c - '0';
else if (r > 10 && isalpha((unsigned char) c))
out = toupper(c) - 'A' + 10;
else
return -1;
return (out >= r) ? -1 : out;
}
STATIC char s_val2ch(int v, int caps)
{
assert(v >= 0);
if (v < 10)
return v + '0';
else {
char out = (v - 10) + 'a';
if (caps)
return toupper(out);
else
return out;
}
}
STATIC void s_2comp(unsigned char *buf, int len)
{
int i;
unsigned short s = 1;
for (i = len - 1; i >= 0; --i) {
unsigned char c = ~buf[i];
s = c + s;
c = s & UCHAR_MAX;
s >>= CHAR_BIT;
buf[i] = c;
}
/* last carry out is ignored */
}
STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
{
mp_size uz;
mp_digit *dz;
int pos = 0, limit = *limpos;
uz = MP_USED(z); dz = MP_DIGITS(z);
while (uz > 0 && pos < limit) {
mp_digit d = *dz++;
int i;
for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
buf[pos++] = (unsigned char)d;
d >>= CHAR_BIT;
/* Don't write leading zeroes */
if (d == 0 && uz == 1)
i = 0; /* exit loop without signaling truncation */
}
/* Detect truncation (loop exited with pos >= limit) */
if (i > 0) break;
--uz;
}
if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
if (pos < limit)
buf[pos++] = 0;
else
uz = 1;
}
/* Digits are in reverse order, fix that */
REV(unsigned char, buf, pos);
/* Return the number of bytes actually written */
*limpos = pos;
return (uz == 0) ? MP_OK : MP_TRUNC;
}
#if DEBUG
void s_print(char *tag, mp_int z)
{
int i;
fprintf(stderr, "%s: %c ", tag,
(MP_SIGN(z) == MP_NEG) ? '-' : '+');
for (i = MP_USED(z) - 1; i >= 0; --i)
fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), z->digits[i]);
fputc('\n', stderr);
}
void s_print_buf(char *tag, mp_digit *buf, mp_size num)
{
int i;
fprintf(stderr, "%s: ", tag);
for (i = num - 1; i >= 0; --i)
fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]);
fputc('\n', stderr);
}
#endif
/* Here there be dragons */
|