1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
#include "benchmark/benchmark.h"
#define BASIC_BENCHMARK_TEST(x) BENCHMARK(x)->Arg(8)->Arg(512)->Arg(8192)
void BM_empty(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(state.iterations());
}
}
BENCHMARK(BM_empty);
BENCHMARK(BM_empty)->ThreadPerCpu();
void BM_spin_empty(benchmark::State& state) {
for (auto _ : state) {
for (int x = 0; x < state.range(0); ++x) {
benchmark::DoNotOptimize(x);
}
}
}
BASIC_BENCHMARK_TEST(BM_spin_empty);
BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu();
void BM_spin_pause_before(benchmark::State& state) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
for (auto _ : state) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
}
BASIC_BENCHMARK_TEST(BM_spin_pause_before);
BASIC_BENCHMARK_TEST(BM_spin_pause_before)->ThreadPerCpu();
void BM_spin_pause_during(benchmark::State& state) {
for (auto _ : state) {
state.PauseTiming();
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
state.ResumeTiming();
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
}
BASIC_BENCHMARK_TEST(BM_spin_pause_during);
BASIC_BENCHMARK_TEST(BM_spin_pause_during)->ThreadPerCpu();
void BM_pause_during(benchmark::State& state) {
for (auto _ : state) {
state.PauseTiming();
state.ResumeTiming();
}
}
BENCHMARK(BM_pause_during);
BENCHMARK(BM_pause_during)->ThreadPerCpu();
BENCHMARK(BM_pause_during)->UseRealTime();
BENCHMARK(BM_pause_during)->UseRealTime()->ThreadPerCpu();
void BM_spin_pause_after(benchmark::State& state) {
for (auto _ : state) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
BASIC_BENCHMARK_TEST(BM_spin_pause_after);
BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu();
void BM_spin_pause_before_and_after(benchmark::State& state) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
for (auto _ : state) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after);
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after)->ThreadPerCpu();
void BM_empty_stop_start(benchmark::State& state) {
for (auto _ : state) {
}
}
BENCHMARK(BM_empty_stop_start);
BENCHMARK(BM_empty_stop_start)->ThreadPerCpu();
void BM_KeepRunning(benchmark::State& state) {
size_t iter_count = 0;
assert(iter_count == state.iterations());
while (state.KeepRunning()) {
++iter_count;
}
assert(iter_count == state.iterations());
}
BENCHMARK(BM_KeepRunning);
void BM_KeepRunningBatch(benchmark::State& state) {
// Choose a prime batch size to avoid evenly dividing max_iterations.
const size_t batch_size = 101;
size_t iter_count = 0;
while (state.KeepRunningBatch(batch_size)) {
iter_count += batch_size;
}
assert(state.iterations() == iter_count);
}
BENCHMARK(BM_KeepRunningBatch);
void BM_RangedFor(benchmark::State& state) {
size_t iter_count = 0;
for (auto _ : state) {
++iter_count;
}
assert(iter_count == state.max_iterations);
}
BENCHMARK(BM_RangedFor);
// Ensure that StateIterator provides all the necessary typedefs required to
// instantiate std::iterator_traits.
static_assert(std::is_same<
typename std::iterator_traits<benchmark::State::StateIterator>::value_type,
typename benchmark::State::StateIterator::value_type>::value, "");
BENCHMARK_MAIN();
|