reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
/// algorithm.
///
/// The SCC iterator has the important property that if a node in SCC S1 has an
/// edge to a node in SCC S2, then it visits S1 *after* S2.
///
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
/// This requires some simple wrappers and is not supported yet.)
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_SCCITERATOR_H
#define LLVM_ADT_SCCITERATOR_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <vector>

namespace llvm {

/// Enumerate the SCCs of a directed graph in reverse topological order
/// of the SCC DAG.
///
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
/// build up a vector of nodes in a particular SCC. Note that it is a forward
/// iterator and thus you cannot backtrack or re-visit nodes.
template <class GraphT, class GT = GraphTraits<GraphT>>
class scc_iterator : public iterator_facade_base<
                         scc_iterator<GraphT, GT>, std::forward_iterator_tag,
                         const std::vector<typename GT::NodeRef>, ptrdiff_t> {
  using NodeRef = typename GT::NodeRef;
  using ChildItTy = typename GT::ChildIteratorType;
  using SccTy = std::vector<NodeRef>;
  using reference = typename scc_iterator::reference;

  /// Element of VisitStack during DFS.
  struct StackElement {
    NodeRef Node;         ///< The current node pointer.
    ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
    unsigned MinVisited;  ///< Minimum uplink value of all children of Node.

    StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
        : Node(Node), NextChild(Child), MinVisited(Min) {}

    bool operator==(const StackElement &Other) const {
      return Node == Other.Node &&
             NextChild == Other.NextChild &&
             MinVisited == Other.MinVisited;
    }
  };

  /// The visit counters used to detect when a complete SCC is on the stack.
  /// visitNum is the global counter.
  ///
  /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
  unsigned visitNum;
  DenseMap<NodeRef, unsigned> nodeVisitNumbers;

  /// Stack holding nodes of the SCC.
  std::vector<NodeRef> SCCNodeStack;

  /// The current SCC, retrieved using operator*().
  SccTy CurrentSCC;

  /// DFS stack, Used to maintain the ordering.  The top contains the current
  /// node, the next child to visit, and the minimum uplink value of all child
  std::vector<StackElement> VisitStack;

  /// A single "visit" within the non-recursive DFS traversal.
  void DFSVisitOne(NodeRef N);

  /// The stack-based DFS traversal; defined below.
  void DFSVisitChildren();

  /// Compute the next SCC using the DFS traversal.
  void GetNextSCC();

  scc_iterator(NodeRef entryN) : visitNum(0) {
    DFSVisitOne(entryN);
    GetNextSCC();
  }

  /// End is when the DFS stack is empty.
  scc_iterator() = default;

public:
  static scc_iterator begin(const GraphT &G) {
    return scc_iterator(GT::getEntryNode(G));
  }
  static scc_iterator end(const GraphT &) { return scc_iterator(); }

  /// Direct loop termination test which is more efficient than
  /// comparison with \c end().
  bool isAtEnd() const {
    assert(!CurrentSCC.empty() || VisitStack.empty());
    return CurrentSCC.empty();
  }

  bool operator==(const scc_iterator &x) const {
    return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
  }

  scc_iterator &operator++() {
    GetNextSCC();
    return *this;
  }

  reference operator*() const {
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
    return CurrentSCC;
  }

  /// Test if the current SCC has a loop.
  ///
  /// If the SCC has more than one node, this is trivially true.  If not, it may
  /// still contain a loop if the node has an edge back to itself.
  bool hasLoop() const;

  /// This informs the \c scc_iterator that the specified \c Old node
  /// has been deleted, and \c New is to be used in its place.
  void ReplaceNode(NodeRef Old, NodeRef New) {
    assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
    nodeVisitNumbers[New] = nodeVisitNumbers[Old];
    nodeVisitNumbers.erase(Old);
  }
};

template <class GraphT, class GT>
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
  ++visitNum;
  nodeVisitNumbers[N] = visitNum;
  SCCNodeStack.push_back(N);
  VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
#if 0 // Enable if needed when debugging.
  dbgs() << "TarjanSCC: Node " << N <<
        " : visitNum = " << visitNum << "\n";
#endif
}

template <class GraphT, class GT>
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
  assert(!VisitStack.empty());
  while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
    // TOS has at least one more child so continue DFS
    NodeRef childN = *VisitStack.back().NextChild++;
    typename DenseMap<NodeRef, unsigned>::iterator Visited =
        nodeVisitNumbers.find(childN);
    if (Visited == nodeVisitNumbers.end()) {
      // this node has never been seen.
      DFSVisitOne(childN);
      continue;
    }

    unsigned childNum = Visited->second;
    if (VisitStack.back().MinVisited > childNum)
      VisitStack.back().MinVisited = childNum;
  }
}

template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
  CurrentSCC.clear(); // Prepare to compute the next SCC
  while (!VisitStack.empty()) {
    DFSVisitChildren();

    // Pop the leaf on top of the VisitStack.
    NodeRef visitingN = VisitStack.back().Node;
    unsigned minVisitNum = VisitStack.back().MinVisited;
    assert(VisitStack.back().NextChild == GT::child_end(visitingN));
    VisitStack.pop_back();

    // Propagate MinVisitNum to parent so we can detect the SCC starting node.
    if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
      VisitStack.back().MinVisited = minVisitNum;

#if 0 // Enable if needed when debugging.
    dbgs() << "TarjanSCC: Popped node " << visitingN <<
          " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
          nodeVisitNumbers[visitingN] << "\n";
#endif

    if (minVisitNum != nodeVisitNumbers[visitingN])
      continue;

    // A full SCC is on the SCCNodeStack!  It includes all nodes below
    // visitingN on the stack.  Copy those nodes to CurrentSCC,
    // reset their minVisit values, and return (this suspends
    // the DFS traversal till the next ++).
    do {
      CurrentSCC.push_back(SCCNodeStack.back());
      SCCNodeStack.pop_back();
      nodeVisitNumbers[CurrentSCC.back()] = ~0U;
    } while (CurrentSCC.back() != visitingN);
    return;
  }
}

template <class GraphT, class GT>
bool scc_iterator<GraphT, GT>::hasLoop() const {
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
    if (CurrentSCC.size() > 1)
      return true;
    NodeRef N = CurrentSCC.front();
    for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
         ++CI)
      if (*CI == N)
        return true;
    return false;
  }

/// Construct the begin iterator for a deduced graph type T.
template <class T> scc_iterator<T> scc_begin(const T &G) {
  return scc_iterator<T>::begin(G);
}

/// Construct the end iterator for a deduced graph type T.
template <class T> scc_iterator<T> scc_end(const T &G) {
  return scc_iterator<T>::end(G);
}

} // end namespace llvm

#endif // LLVM_ADT_SCCITERATOR_H