reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides interfaces used to build and manipulate a call graph,
/// which is a very useful tool for interprocedural optimization.
///
/// Every function in a module is represented as a node in the call graph.  The
/// callgraph node keeps track of which functions are called by the function
/// corresponding to the node.
///
/// A call graph may contain nodes where the function that they correspond to
/// is null.  These 'external' nodes are used to represent control flow that is
/// not represented (or analyzable) in the module.  In particular, this
/// analysis builds one external node such that:
///   1. All functions in the module without internal linkage will have edges
///      from this external node, indicating that they could be called by
///      functions outside of the module.
///   2. All functions whose address is used for something more than a direct
///      call, for example being stored into a memory location will also have
///      an edge from this external node.  Since they may be called by an
///      unknown caller later, they must be tracked as such.
///
/// There is a second external node added for calls that leave this module.
/// Functions have a call edge to the external node iff:
///   1. The function is external, reflecting the fact that they could call
///      anything without internal linkage or that has its address taken.
///   2. The function contains an indirect function call.
///
/// As an extension in the future, there may be multiple nodes with a null
/// function.  These will be used when we can prove (through pointer analysis)
/// that an indirect call site can call only a specific set of functions.
///
/// Because of these properties, the CallGraph captures a conservative superset
/// of all of the caller-callee relationships, which is useful for
/// transformations.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_CALLGRAPH_H
#define LLVM_ANALYSIS_CALLGRAPH_H

#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include <cassert>
#include <map>
#include <memory>
#include <utility>
#include <vector>

namespace llvm {

class CallGraphNode;
class Module;
class raw_ostream;

/// The basic data container for the call graph of a \c Module of IR.
///
/// This class exposes both the interface to the call graph for a module of IR.
///
/// The core call graph itself can also be updated to reflect changes to the IR.
class CallGraph {
  Module &M;

  using FunctionMapTy =
      std::map<const Function *, std::unique_ptr<CallGraphNode>>;

  /// A map from \c Function* to \c CallGraphNode*.
  FunctionMapTy FunctionMap;

  /// This node has edges to all external functions and those internal
  /// functions that have their address taken.
  CallGraphNode *ExternalCallingNode;

  /// This node has edges to it from all functions making indirect calls
  /// or calling an external function.
  std::unique_ptr<CallGraphNode> CallsExternalNode;

  /// Replace the function represented by this node by another.
  ///
  /// This does not rescan the body of the function, so it is suitable when
  /// splicing the body of one function to another while also updating all
  /// callers from the old function to the new.
  void spliceFunction(const Function *From, const Function *To);

  /// Add a function to the call graph, and link the node to all of the
  /// functions that it calls.
  void addToCallGraph(Function *F);

public:
  explicit CallGraph(Module &M);
  CallGraph(CallGraph &&Arg);
  ~CallGraph();

  void print(raw_ostream &OS) const;
  void dump() const;

  using iterator = FunctionMapTy::iterator;
  using const_iterator = FunctionMapTy::const_iterator;

  /// Returns the module the call graph corresponds to.
  Module &getModule() const { return M; }

  inline iterator begin() { return FunctionMap.begin(); }
  inline iterator end() { return FunctionMap.end(); }
  inline const_iterator begin() const { return FunctionMap.begin(); }
  inline const_iterator end() const { return FunctionMap.end(); }

  /// Returns the call graph node for the provided function.
  inline const CallGraphNode *operator[](const Function *F) const {
    const_iterator I = FunctionMap.find(F);
    assert(I != FunctionMap.end() && "Function not in callgraph!");
    return I->second.get();
  }

  /// Returns the call graph node for the provided function.
  inline CallGraphNode *operator[](const Function *F) {
    const_iterator I = FunctionMap.find(F);
    assert(I != FunctionMap.end() && "Function not in callgraph!");
    return I->second.get();
  }

  /// Returns the \c CallGraphNode which is used to represent
  /// undetermined calls into the callgraph.
  CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }

  CallGraphNode *getCallsExternalNode() const {
    return CallsExternalNode.get();
  }

  //===---------------------------------------------------------------------
  // Functions to keep a call graph up to date with a function that has been
  // modified.
  //

  /// Unlink the function from this module, returning it.
  ///
  /// Because this removes the function from the module, the call graph node is
  /// destroyed.  This is only valid if the function does not call any other
  /// functions (ie, there are no edges in it's CGN).  The easiest way to do
  /// this is to dropAllReferences before calling this.
  Function *removeFunctionFromModule(CallGraphNode *CGN);

  /// Similar to operator[], but this will insert a new CallGraphNode for
  /// \c F if one does not already exist.
  CallGraphNode *getOrInsertFunction(const Function *F);
};

/// A node in the call graph for a module.
///
/// Typically represents a function in the call graph. There are also special
/// "null" nodes used to represent theoretical entries in the call graph.
class CallGraphNode {
public:
  /// A pair of the calling instruction (a call or invoke)
  /// and the call graph node being called.
  using CallRecord = std::pair<WeakTrackingVH, CallGraphNode *>;

public:
  using CalledFunctionsVector = std::vector<CallRecord>;

  /// Creates a node for the specified function.
  inline CallGraphNode(Function *F) : F(F) {}

  CallGraphNode(const CallGraphNode &) = delete;
  CallGraphNode &operator=(const CallGraphNode &) = delete;

  ~CallGraphNode() {
    assert(NumReferences == 0 && "Node deleted while references remain");
  }

  using iterator = std::vector<CallRecord>::iterator;
  using const_iterator = std::vector<CallRecord>::const_iterator;

  /// Returns the function that this call graph node represents.
  Function *getFunction() const { return F; }

  inline iterator begin() { return CalledFunctions.begin(); }
  inline iterator end() { return CalledFunctions.end(); }
  inline const_iterator begin() const { return CalledFunctions.begin(); }
  inline const_iterator end() const { return CalledFunctions.end(); }
  inline bool empty() const { return CalledFunctions.empty(); }
  inline unsigned size() const { return (unsigned)CalledFunctions.size(); }

  /// Returns the number of other CallGraphNodes in this CallGraph that
  /// reference this node in their callee list.
  unsigned getNumReferences() const { return NumReferences; }

  /// Returns the i'th called function.
  CallGraphNode *operator[](unsigned i) const {
    assert(i < CalledFunctions.size() && "Invalid index");
    return CalledFunctions[i].second;
  }

  /// Print out this call graph node.
  void dump() const;
  void print(raw_ostream &OS) const;

  //===---------------------------------------------------------------------
  // Methods to keep a call graph up to date with a function that has been
  // modified
  //

  /// Removes all edges from this CallGraphNode to any functions it
  /// calls.
  void removeAllCalledFunctions() {
    while (!CalledFunctions.empty()) {
      CalledFunctions.back().second->DropRef();
      CalledFunctions.pop_back();
    }
  }

  /// Moves all the callee information from N to this node.
  void stealCalledFunctionsFrom(CallGraphNode *N) {
    assert(CalledFunctions.empty() &&
           "Cannot steal callsite information if I already have some");
    std::swap(CalledFunctions, N->CalledFunctions);
  }

  /// Adds a function to the list of functions called by this one.
  void addCalledFunction(CallBase *Call, CallGraphNode *M) {
    assert(!Call || !Call->getCalledFunction() ||
           !Call->getCalledFunction()->isIntrinsic() ||
           !Intrinsic::isLeaf(Call->getCalledFunction()->getIntrinsicID()));
    CalledFunctions.emplace_back(Call, M);
    M->AddRef();
  }

  void removeCallEdge(iterator I) {
    I->second->DropRef();
    *I = CalledFunctions.back();
    CalledFunctions.pop_back();
  }

  /// Removes the edge in the node for the specified call site.
  ///
  /// Note that this method takes linear time, so it should be used sparingly.
  void removeCallEdgeFor(CallBase &Call);

  /// Removes all call edges from this node to the specified callee
  /// function.
  ///
  /// This takes more time to execute than removeCallEdgeTo, so it should not
  /// be used unless necessary.
  void removeAnyCallEdgeTo(CallGraphNode *Callee);

  /// Removes one edge associated with a null callsite from this node to
  /// the specified callee function.
  void removeOneAbstractEdgeTo(CallGraphNode *Callee);

  /// Replaces the edge in the node for the specified call site with a
  /// new one.
  ///
  /// Note that this method takes linear time, so it should be used sparingly.
  void replaceCallEdge(CallBase &Call, CallBase &NewCall,
                       CallGraphNode *NewNode);

private:
  friend class CallGraph;

  Function *F;

  std::vector<CallRecord> CalledFunctions;

  /// The number of times that this CallGraphNode occurs in the
  /// CalledFunctions array of this or other CallGraphNodes.
  unsigned NumReferences = 0;

  void DropRef() { --NumReferences; }
  void AddRef() { ++NumReferences; }

  /// A special function that should only be used by the CallGraph class.
  void allReferencesDropped() { NumReferences = 0; }
};

/// An analysis pass to compute the \c CallGraph for a \c Module.
///
/// This class implements the concept of an analysis pass used by the \c
/// ModuleAnalysisManager to run an analysis over a module and cache the
/// resulting data.
class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> {
  friend AnalysisInfoMixin<CallGraphAnalysis>;

  static AnalysisKey Key;

public:
  /// A formulaic type to inform clients of the result type.
  using Result = CallGraph;

  /// Compute the \c CallGraph for the module \c M.
  ///
  /// The real work here is done in the \c CallGraph constructor.
  CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); }
};

/// Printer pass for the \c CallGraphAnalysis results.
class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> {
  raw_ostream &OS;

public:
  explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}

  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
};

/// The \c ModulePass which wraps up a \c CallGraph and the logic to
/// build it.
///
/// This class exposes both the interface to the call graph container and the
/// module pass which runs over a module of IR and produces the call graph. The
/// call graph interface is entirelly a wrapper around a \c CallGraph object
/// which is stored internally for each module.
class CallGraphWrapperPass : public ModulePass {
  std::unique_ptr<CallGraph> G;

public:
  static char ID; // Class identification, replacement for typeinfo

  CallGraphWrapperPass();
  ~CallGraphWrapperPass() override;

  /// The internal \c CallGraph around which the rest of this interface
  /// is wrapped.
  const CallGraph &getCallGraph() const { return *G; }
  CallGraph &getCallGraph() { return *G; }

  using iterator = CallGraph::iterator;
  using const_iterator = CallGraph::const_iterator;

  /// Returns the module the call graph corresponds to.
  Module &getModule() const { return G->getModule(); }

  inline iterator begin() { return G->begin(); }
  inline iterator end() { return G->end(); }
  inline const_iterator begin() const { return G->begin(); }
  inline const_iterator end() const { return G->end(); }

  /// Returns the call graph node for the provided function.
  inline const CallGraphNode *operator[](const Function *F) const {
    return (*G)[F];
  }

  /// Returns the call graph node for the provided function.
  inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }

  /// Returns the \c CallGraphNode which is used to represent
  /// undetermined calls into the callgraph.
  CallGraphNode *getExternalCallingNode() const {
    return G->getExternalCallingNode();
  }

  CallGraphNode *getCallsExternalNode() const {
    return G->getCallsExternalNode();
  }

  //===---------------------------------------------------------------------
  // Functions to keep a call graph up to date with a function that has been
  // modified.
  //

  /// Unlink the function from this module, returning it.
  ///
  /// Because this removes the function from the module, the call graph node is
  /// destroyed.  This is only valid if the function does not call any other
  /// functions (ie, there are no edges in it's CGN).  The easiest way to do
  /// this is to dropAllReferences before calling this.
  Function *removeFunctionFromModule(CallGraphNode *CGN) {
    return G->removeFunctionFromModule(CGN);
  }

  /// Similar to operator[], but this will insert a new CallGraphNode for
  /// \c F if one does not already exist.
  CallGraphNode *getOrInsertFunction(const Function *F) {
    return G->getOrInsertFunction(F);
  }

  //===---------------------------------------------------------------------
  // Implementation of the ModulePass interface needed here.
  //

  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnModule(Module &M) override;
  void releaseMemory() override;

  void print(raw_ostream &o, const Module *) const override;
  void dump() const;
};

//===----------------------------------------------------------------------===//
// GraphTraits specializations for call graphs so that they can be treated as
// graphs by the generic graph algorithms.
//

// Provide graph traits for tranversing call graphs using standard graph
// traversals.
template <> struct GraphTraits<CallGraphNode *> {
  using NodeRef = CallGraphNode *;
  using CGNPairTy = CallGraphNode::CallRecord;

  static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; }
  static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }

  using ChildIteratorType =
      mapped_iterator<CallGraphNode::iterator, decltype(&CGNGetValue)>;

  static ChildIteratorType child_begin(NodeRef N) {
    return ChildIteratorType(N->begin(), &CGNGetValue);
  }

  static ChildIteratorType child_end(NodeRef N) {
    return ChildIteratorType(N->end(), &CGNGetValue);
  }
};

template <> struct GraphTraits<const CallGraphNode *> {
  using NodeRef = const CallGraphNode *;
  using CGNPairTy = CallGraphNode::CallRecord;
  using EdgeRef = const CallGraphNode::CallRecord &;

  static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; }
  static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }

  using ChildIteratorType =
      mapped_iterator<CallGraphNode::const_iterator, decltype(&CGNGetValue)>;
  using ChildEdgeIteratorType = CallGraphNode::const_iterator;

  static ChildIteratorType child_begin(NodeRef N) {
    return ChildIteratorType(N->begin(), &CGNGetValue);
  }

  static ChildIteratorType child_end(NodeRef N) {
    return ChildIteratorType(N->end(), &CGNGetValue);
  }

  static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
    return N->begin();
  }
  static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }

  static NodeRef edge_dest(EdgeRef E) { return E.second; }
};

template <>
struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
  using PairTy =
      std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;

  static NodeRef getEntryNode(CallGraph *CGN) {
    return CGN->getExternalCallingNode(); // Start at the external node!
  }

  static CallGraphNode *CGGetValuePtr(const PairTy &P) {
    return P.second.get();
  }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  using nodes_iterator =
      mapped_iterator<CallGraph::iterator, decltype(&CGGetValuePtr)>;

  static nodes_iterator nodes_begin(CallGraph *CG) {
    return nodes_iterator(CG->begin(), &CGGetValuePtr);
  }

  static nodes_iterator nodes_end(CallGraph *CG) {
    return nodes_iterator(CG->end(), &CGGetValuePtr);
  }
};

template <>
struct GraphTraits<const CallGraph *> : public GraphTraits<
                                            const CallGraphNode *> {
  using PairTy =
      std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;

  static NodeRef getEntryNode(const CallGraph *CGN) {
    return CGN->getExternalCallingNode(); // Start at the external node!
  }

  static const CallGraphNode *CGGetValuePtr(const PairTy &P) {
    return P.second.get();
  }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  using nodes_iterator =
      mapped_iterator<CallGraph::const_iterator, decltype(&CGGetValuePtr)>;

  static nodes_iterator nodes_begin(const CallGraph *CG) {
    return nodes_iterator(CG->begin(), &CGGetValuePtr);
  }

  static nodes_iterator nodes_end(const CallGraph *CG) {
    return nodes_iterator(CG->end(), &CGGetValuePtr);
  }
};

} // end namespace llvm

#endif // LLVM_ANALYSIS_CALLGRAPH_H