reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
//===- MemoryLocation.h - Memory location descriptions ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides utility analysis objects describing memory locations.
/// These are used both by the Alias Analysis infrastructure and more
/// specialized memory analysis layers.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_MEMORYLOCATION_H
#define LLVM_ANALYSIS_MEMORYLOCATION_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"

namespace llvm {

class LoadInst;
class StoreInst;
class MemTransferInst;
class MemIntrinsic;
class AtomicMemTransferInst;
class AtomicMemIntrinsic;
class AnyMemTransferInst;
class AnyMemIntrinsic;
class TargetLibraryInfo;

// Represents the size of a MemoryLocation. Logically, it's an
// Optional<uint63_t> that also carries a bit to represent whether the integer
// it contains, N, is 'precise'. Precise, in this context, means that we know
// that the area of storage referenced by the given MemoryLocation must be
// precisely N bytes. An imprecise value is formed as the union of two or more
// precise values, and can conservatively represent all of the values unioned
// into it. Importantly, imprecise values are an *upper-bound* on the size of a
// MemoryLocation.
//
// Concretely, a precise MemoryLocation is (%p, 4) in
// store i32 0, i32* %p
//
// Since we know that %p must be at least 4 bytes large at this point.
// Otherwise, we have UB. An example of an imprecise MemoryLocation is (%p, 4)
// at the memcpy in
//
//   %n = select i1 %foo, i64 1, i64 4
//   call void @llvm.memcpy.p0i8.p0i8.i64(i8* %p, i8* %baz, i64 %n, i32 1,
//                                        i1 false)
//
// ...Since we'll copy *up to* 4 bytes into %p, but we can't guarantee that
// we'll ever actually do so.
//
// If asked to represent a pathologically large value, this will degrade to
// None.
class LocationSize {
  enum : uint64_t {
    Unknown = ~uint64_t(0),
    ImpreciseBit = uint64_t(1) << 63,
    MapEmpty = Unknown - 1,
    MapTombstone = Unknown - 2,

    // The maximum value we can represent without falling back to 'unknown'.
    MaxValue = (MapTombstone - 1) & ~ImpreciseBit,
  };

  uint64_t Value;

  // Hack to support implicit construction. This should disappear when the
  // public LocationSize ctor goes away.
  enum DirectConstruction { Direct };

  constexpr LocationSize(uint64_t Raw, DirectConstruction): Value(Raw) {}

  static_assert(Unknown & ImpreciseBit, "Unknown is imprecise by definition.");
public:
  // FIXME: Migrate all users to construct via either `precise` or `upperBound`,
  // to make it more obvious at the callsite the kind of size that they're
  // providing.
  //
  // Since the overwhelming majority of users of this provide precise values,
  // this assumes the provided value is precise.
  constexpr LocationSize(uint64_t Raw)
      : Value(Raw > MaxValue ? Unknown : Raw) {}

  static LocationSize precise(uint64_t Value) { return LocationSize(Value); }

  static LocationSize upperBound(uint64_t Value) {
    // You can't go lower than 0, so give a precise result.
    if (LLVM_UNLIKELY(Value == 0))
      return precise(0);
    if (LLVM_UNLIKELY(Value > MaxValue))
      return unknown();
    return LocationSize(Value | ImpreciseBit, Direct);
  }

  constexpr static LocationSize unknown() {
    return LocationSize(Unknown, Direct);
  }

  // Sentinel values, generally used for maps.
  constexpr static LocationSize mapTombstone() {
    return LocationSize(MapTombstone, Direct);
  }
  constexpr static LocationSize mapEmpty() {
    return LocationSize(MapEmpty, Direct);
  }

  // Returns a LocationSize that can correctly represent either `*this` or
  // `Other`.
  LocationSize unionWith(LocationSize Other) const {
    if (Other == *this)
      return *this;

    if (!hasValue() || !Other.hasValue())
      return unknown();

    return upperBound(std::max(getValue(), Other.getValue()));
  }

  bool hasValue() const { return Value != Unknown; }
  uint64_t getValue() const {
    assert(hasValue() && "Getting value from an unknown LocationSize!");
    return Value & ~ImpreciseBit;
  }

  // Returns whether or not this value is precise. Note that if a value is
  // precise, it's guaranteed to not be `unknown()`.
  bool isPrecise() const {
    return (Value & ImpreciseBit) == 0;
  }

  // Convenience method to check if this LocationSize's value is 0.
  bool isZero() const { return hasValue() && getValue() == 0; }

  bool operator==(const LocationSize &Other) const {
    return Value == Other.Value;
  }

  bool operator!=(const LocationSize &Other) const {
    return !(*this == Other);
  }

  // Ordering operators are not provided, since it's unclear if there's only one
  // reasonable way to compare:
  // - values that don't exist against values that do, and
  // - precise values to imprecise values

  void print(raw_ostream &OS) const;

  // Returns an opaque value that represents this LocationSize. Cannot be
  // reliably converted back into a LocationSize.
  uint64_t toRaw() const { return Value; }
};

inline raw_ostream &operator<<(raw_ostream &OS, LocationSize Size) {
  Size.print(OS);
  return OS;
}

/// Representation for a specific memory location.
///
/// This abstraction can be used to represent a specific location in memory.
/// The goal of the location is to represent enough information to describe
/// abstract aliasing, modification, and reference behaviors of whatever
/// value(s) are stored in memory at the particular location.
///
/// The primary user of this interface is LLVM's Alias Analysis, but other
/// memory analyses such as MemoryDependence can use it as well.
class MemoryLocation {
public:
  /// UnknownSize - This is a special value which can be used with the
  /// size arguments in alias queries to indicate that the caller does not
  /// know the sizes of the potential memory references.
  enum : uint64_t { UnknownSize = ~UINT64_C(0) };

  /// The address of the start of the location.
  const Value *Ptr;

  /// The maximum size of the location, in address-units, or
  /// UnknownSize if the size is not known.
  ///
  /// Note that an unknown size does not mean the pointer aliases the entire
  /// virtual address space, because there are restrictions on stepping out of
  /// one object and into another. See
  /// http://llvm.org/docs/LangRef.html#pointeraliasing
  LocationSize Size;

  /// The metadata nodes which describes the aliasing of the location (each
  /// member is null if that kind of information is unavailable).
  AAMDNodes AATags;

  /// Return a location with information about the memory reference by the given
  /// instruction.
  static MemoryLocation get(const LoadInst *LI);
  static MemoryLocation get(const StoreInst *SI);
  static MemoryLocation get(const VAArgInst *VI);
  static MemoryLocation get(const AtomicCmpXchgInst *CXI);
  static MemoryLocation get(const AtomicRMWInst *RMWI);
  static MemoryLocation get(const Instruction *Inst) {
    return *MemoryLocation::getOrNone(Inst);
  }
  static Optional<MemoryLocation> getOrNone(const Instruction *Inst) {
    switch (Inst->getOpcode()) {
    case Instruction::Load:
      return get(cast<LoadInst>(Inst));
    case Instruction::Store:
      return get(cast<StoreInst>(Inst));
    case Instruction::VAArg:
      return get(cast<VAArgInst>(Inst));
    case Instruction::AtomicCmpXchg:
      return get(cast<AtomicCmpXchgInst>(Inst));
    case Instruction::AtomicRMW:
      return get(cast<AtomicRMWInst>(Inst));
    default:
      return None;
    }
  }

  /// Return a location representing the source of a memory transfer.
  static MemoryLocation getForSource(const MemTransferInst *MTI);
  static MemoryLocation getForSource(const AtomicMemTransferInst *MTI);
  static MemoryLocation getForSource(const AnyMemTransferInst *MTI);

  /// Return a location representing the destination of a memory set or
  /// transfer.
  static MemoryLocation getForDest(const MemIntrinsic *MI);
  static MemoryLocation getForDest(const AtomicMemIntrinsic *MI);
  static MemoryLocation getForDest(const AnyMemIntrinsic *MI);

  /// Return a location representing a particular argument of a call.
  static MemoryLocation getForArgument(const CallBase *Call, unsigned ArgIdx,
                                       const TargetLibraryInfo *TLI);
  static MemoryLocation getForArgument(const CallBase *Call, unsigned ArgIdx,
                                       const TargetLibraryInfo &TLI) {
    return getForArgument(Call, ArgIdx, &TLI);
  }

  explicit MemoryLocation(const Value *Ptr = nullptr,
                          LocationSize Size = LocationSize::unknown(),
                          const AAMDNodes &AATags = AAMDNodes())
      : Ptr(Ptr), Size(Size), AATags(AATags) {}

  MemoryLocation getWithNewPtr(const Value *NewPtr) const {
    MemoryLocation Copy(*this);
    Copy.Ptr = NewPtr;
    return Copy;
  }

  MemoryLocation getWithNewSize(LocationSize NewSize) const {
    MemoryLocation Copy(*this);
    Copy.Size = NewSize;
    return Copy;
  }

  MemoryLocation getWithoutAATags() const {
    MemoryLocation Copy(*this);
    Copy.AATags = AAMDNodes();
    return Copy;
  }

  bool operator==(const MemoryLocation &Other) const {
    return Ptr == Other.Ptr && Size == Other.Size && AATags == Other.AATags;
  }
};

// Specialize DenseMapInfo.
template <> struct DenseMapInfo<LocationSize> {
  static inline LocationSize getEmptyKey() {
    return LocationSize::mapEmpty();
  }
  static inline LocationSize getTombstoneKey() {
    return LocationSize::mapTombstone();
  }
  static unsigned getHashValue(const LocationSize &Val) {
    return DenseMapInfo<uint64_t>::getHashValue(Val.toRaw());
  }
  static bool isEqual(const LocationSize &LHS, const LocationSize &RHS) {
    return LHS == RHS;
  }
};

template <> struct DenseMapInfo<MemoryLocation> {
  static inline MemoryLocation getEmptyKey() {
    return MemoryLocation(DenseMapInfo<const Value *>::getEmptyKey(),
                          DenseMapInfo<LocationSize>::getEmptyKey());
  }
  static inline MemoryLocation getTombstoneKey() {
    return MemoryLocation(DenseMapInfo<const Value *>::getTombstoneKey(),
                          DenseMapInfo<LocationSize>::getTombstoneKey());
  }
  static unsigned getHashValue(const MemoryLocation &Val) {
    return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
           DenseMapInfo<LocationSize>::getHashValue(Val.Size) ^
           DenseMapInfo<AAMDNodes>::getHashValue(Val.AATags);
  }
  static bool isEqual(const MemoryLocation &LHS, const MemoryLocation &RHS) {
    return LHS == RHS;
  }
};
}

#endif