reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
//===- RegionIterator.h - Iterators to iteratate over Regions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines the iterators to iterate over the elements of a Region.
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_REGIONITERATOR_H
#define LLVM_ANALYSIS_REGIONITERATOR_H

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/IR/CFG.h"
#include <cassert>
#include <iterator>
#include <type_traits>

namespace llvm {

class BasicBlock;

//===----------------------------------------------------------------------===//
/// Hierarchical RegionNode successor iterator.
///
/// This iterator iterates over all successors of a RegionNode.
///
/// For a BasicBlock RegionNode it skips all BasicBlocks that are not part of
/// the parent Region.  Furthermore for BasicBlocks that start a subregion, a
/// RegionNode representing the subregion is returned.
///
/// For a subregion RegionNode there is just one successor. The RegionNode
/// representing the exit of the subregion.
template <class NodeRef, class BlockT, class RegionT>
class RNSuccIterator
    : public std::iterator<std::forward_iterator_tag, NodeRef> {
  using super = std::iterator<std::forward_iterator_tag, NodeRef>;
  using BlockTraits = GraphTraits<BlockT *>;
  using SuccIterTy = typename BlockTraits::ChildIteratorType;

  // The iterator works in two modes, bb mode or region mode.
  enum ItMode {
    // In BB mode it returns all successors of this BasicBlock as its
    // successors.
    ItBB,
    // In region mode there is only one successor, thats the regionnode mapping
    // to the exit block of the regionnode
    ItRgBegin, // At the beginning of the regionnode successor.
    ItRgEnd    // At the end of the regionnode successor.
  };

  static_assert(std::is_pointer<NodeRef>::value,
                "FIXME: Currently RNSuccIterator only supports NodeRef as "
                "pointers due to the use of pointer-specific data structures "
                "(e.g. PointerIntPair and SmallPtrSet) internally. Generalize "
                "it to support non-pointer types");

  // Use two bit to represent the mode iterator.
  PointerIntPair<NodeRef, 2, ItMode> Node;

  // The block successor iterator.
  SuccIterTy BItor;

  // advanceRegionSucc - A region node has only one successor. It reaches end
  // once we advance it.
  void advanceRegionSucc() {
    assert(Node.getInt() == ItRgBegin && "Cannot advance region successor!");
    Node.setInt(ItRgEnd);
  }

  NodeRef getNode() const { return Node.getPointer(); }

  // isRegionMode - Is the current iterator in region mode?
  bool isRegionMode() const { return Node.getInt() != ItBB; }

  // Get the immediate successor. This function may return a Basic Block
  // RegionNode or a subregion RegionNode.
  NodeRef getISucc(BlockT *BB) const {
    NodeRef succ;
    succ = getNode()->getParent()->getNode(BB);
    assert(succ && "BB not in Region or entered subregion!");
    return succ;
  }

  // getRegionSucc - Return the successor basic block of a SubRegion RegionNode.
  inline BlockT* getRegionSucc() const {
    assert(Node.getInt() == ItRgBegin && "Cannot get the region successor!");
    return getNode()->template getNodeAs<RegionT>()->getExit();
  }

  // isExit - Is this the exit BB of the Region?
  inline bool isExit(BlockT* BB) const {
    return getNode()->getParent()->getExit() == BB;
  }

public:
  using Self = RNSuccIterator<NodeRef, BlockT, RegionT>;
  using value_type = typename super::value_type;

  /// Create begin iterator of a RegionNode.
  inline RNSuccIterator(NodeRef node)
      : Node(node, node->isSubRegion() ? ItRgBegin : ItBB),
        BItor(BlockTraits::child_begin(node->getEntry())) {
    // Skip the exit block
    if (!isRegionMode())
      while (BlockTraits::child_end(node->getEntry()) != BItor && isExit(*BItor))
        ++BItor;

    if (isRegionMode() && isExit(getRegionSucc()))
      advanceRegionSucc();
  }

  /// Create an end iterator.
  inline RNSuccIterator(NodeRef node, bool)
      : Node(node, node->isSubRegion() ? ItRgEnd : ItBB),
        BItor(BlockTraits::child_end(node->getEntry())) {}

  inline bool operator==(const Self& x) const {
    assert(isRegionMode() == x.isRegionMode() && "Broken iterator!");
    if (isRegionMode())
      return Node.getInt() == x.Node.getInt();
    else
      return BItor == x.BItor;
  }

  inline bool operator!=(const Self& x) const { return !operator==(x); }

  inline value_type operator*() const {
    BlockT *BB = isRegionMode() ? getRegionSucc() : *BItor;
    assert(!isExit(BB) && "Iterator out of range!");
    return getISucc(BB);
  }

  inline Self& operator++() {
    if(isRegionMode()) {
      // The Region only has 1 successor.
      advanceRegionSucc();
    } else {
      // Skip the exit.
      do
        ++BItor;
      while (BItor != BlockTraits::child_end(getNode()->getEntry())
          && isExit(*BItor));
    }
    return *this;
  }

  inline Self operator++(int) {
    Self tmp = *this;
    ++*this;
    return tmp;
  }
};

//===----------------------------------------------------------------------===//
/// Flat RegionNode iterator.
///
/// The Flat Region iterator will iterate over all BasicBlock RegionNodes that
/// are contained in the Region and its subregions. This is close to a virtual
/// control flow graph of the Region.
template <class NodeRef, class BlockT, class RegionT>
class RNSuccIterator<FlatIt<NodeRef>, BlockT, RegionT>
    : public std::iterator<std::forward_iterator_tag, NodeRef> {
  using super = std::iterator<std::forward_iterator_tag, NodeRef>;
  using BlockTraits = GraphTraits<BlockT *>;
  using SuccIterTy = typename BlockTraits::ChildIteratorType;

  NodeRef Node;
  SuccIterTy Itor;

public:
  using Self = RNSuccIterator<FlatIt<NodeRef>, BlockT, RegionT>;
  using value_type = typename super::value_type;

  /// Create the iterator from a RegionNode.
  ///
  /// Note that the incoming node must be a bb node, otherwise it will trigger
  /// an assertion when we try to get a BasicBlock.
  inline RNSuccIterator(NodeRef node)
      : Node(node), Itor(BlockTraits::child_begin(node->getEntry())) {
    assert(!Node->isSubRegion() &&
           "Subregion node not allowed in flat iterating mode!");
    assert(Node->getParent() && "A BB node must have a parent!");

    // Skip the exit block of the iterating region.
    while (BlockTraits::child_end(Node->getEntry()) != Itor &&
           Node->getParent()->getExit() == *Itor)
      ++Itor;
  }

  /// Create an end iterator
  inline RNSuccIterator(NodeRef node, bool)
      : Node(node), Itor(BlockTraits::child_end(node->getEntry())) {
    assert(!Node->isSubRegion() &&
           "Subregion node not allowed in flat iterating mode!");
  }

  inline bool operator==(const Self& x) const {
    assert(Node->getParent() == x.Node->getParent()
           && "Cannot compare iterators of different regions!");

    return Itor == x.Itor && Node == x.Node;
  }

  inline bool operator!=(const Self& x) const { return !operator==(x); }

  inline value_type operator*() const {
    BlockT *BB = *Itor;

    // Get the iterating region.
    RegionT *Parent = Node->getParent();

    // The only case that the successor reaches out of the region is it reaches
    // the exit of the region.
    assert(Parent->getExit() != BB && "iterator out of range!");

    return Parent->getBBNode(BB);
  }

  inline Self& operator++() {
    // Skip the exit block of the iterating region.
    do
      ++Itor;
    while (Itor != succ_end(Node->getEntry())
        && Node->getParent()->getExit() == *Itor);

    return *this;
  }

  inline Self operator++(int) {
    Self tmp = *this;
    ++*this;
    return tmp;
  }
};

template <class NodeRef, class BlockT, class RegionT>
inline RNSuccIterator<NodeRef, BlockT, RegionT> succ_begin(NodeRef Node) {
  return RNSuccIterator<NodeRef, BlockT, RegionT>(Node);
}

template <class NodeRef, class BlockT, class RegionT>
inline RNSuccIterator<NodeRef, BlockT, RegionT> succ_end(NodeRef Node) {
  return RNSuccIterator<NodeRef, BlockT, RegionT>(Node, true);
}

//===--------------------------------------------------------------------===//
// RegionNode GraphTraits specialization so the bbs in the region can be
// iterate by generic graph iterators.
//
// NodeT can either be region node or const region node, otherwise child_begin
// and child_end fail.

#define RegionNodeGraphTraits(NodeT, BlockT, RegionT)                          \
  template <> struct GraphTraits<NodeT *> {                                    \
    using NodeRef = NodeT *;                                                   \
    using ChildIteratorType = RNSuccIterator<NodeRef, BlockT, RegionT>;        \
    static NodeRef getEntryNode(NodeRef N) { return N; }                       \
    static inline ChildIteratorType child_begin(NodeRef N) {                   \
      return RNSuccIterator<NodeRef, BlockT, RegionT>(N);                      \
    }                                                                          \
    static inline ChildIteratorType child_end(NodeRef N) {                     \
      return RNSuccIterator<NodeRef, BlockT, RegionT>(N, true);                \
    }                                                                          \
  };                                                                           \
  template <> struct GraphTraits<FlatIt<NodeT *>> {                            \
    using NodeRef = NodeT *;                                                   \
    using ChildIteratorType =                                                  \
        RNSuccIterator<FlatIt<NodeRef>, BlockT, RegionT>;                      \
    static NodeRef getEntryNode(NodeRef N) { return N; }                       \
    static inline ChildIteratorType child_begin(NodeRef N) {                   \
      return RNSuccIterator<FlatIt<NodeRef>, BlockT, RegionT>(N);              \
    }                                                                          \
    static inline ChildIteratorType child_end(NodeRef N) {                     \
      return RNSuccIterator<FlatIt<NodeRef>, BlockT, RegionT>(N, true);        \
    }                                                                          \
  }

#define RegionGraphTraits(RegionT, NodeT)                                      \
  template <> struct GraphTraits<RegionT *> : public GraphTraits<NodeT *> {    \
    using nodes_iterator = df_iterator<NodeRef>;                               \
    static NodeRef getEntryNode(RegionT *R) {                                  \
      return R->getNode(R->getEntry());                                        \
    }                                                                          \
    static nodes_iterator nodes_begin(RegionT *R) {                            \
      return nodes_iterator::begin(getEntryNode(R));                           \
    }                                                                          \
    static nodes_iterator nodes_end(RegionT *R) {                              \
      return nodes_iterator::end(getEntryNode(R));                             \
    }                                                                          \
  };                                                                           \
  template <>                                                                  \
  struct GraphTraits<FlatIt<RegionT *>>                                        \
      : public GraphTraits<FlatIt<NodeT *>> {                                  \
    using nodes_iterator =                                                     \
        df_iterator<NodeRef, df_iterator_default_set<NodeRef>, false,          \
                    GraphTraits<FlatIt<NodeRef>>>;                             \
    static NodeRef getEntryNode(RegionT *R) {                                  \
      return R->getBBNode(R->getEntry());                                      \
    }                                                                          \
    static nodes_iterator nodes_begin(RegionT *R) {                            \
      return nodes_iterator::begin(getEntryNode(R));                           \
    }                                                                          \
    static nodes_iterator nodes_end(RegionT *R) {                              \
      return nodes_iterator::end(getEntryNode(R));                             \
    }                                                                          \
  }

RegionNodeGraphTraits(RegionNode, BasicBlock, Region);
RegionNodeGraphTraits(const RegionNode, BasicBlock, Region);

RegionGraphTraits(Region, RegionNode);
RegionGraphTraits(const Region, const RegionNode);

template <> struct GraphTraits<RegionInfo*>
  : public GraphTraits<FlatIt<RegionNode*>> {
  using nodes_iterator =
      df_iterator<NodeRef, df_iterator_default_set<NodeRef>, false,
                  GraphTraits<FlatIt<NodeRef>>>;

  static NodeRef getEntryNode(RegionInfo *RI) {
    return GraphTraits<FlatIt<Region*>>::getEntryNode(RI->getTopLevelRegion());
  }

  static nodes_iterator nodes_begin(RegionInfo* RI) {
    return nodes_iterator::begin(getEntryNode(RI));
  }

  static nodes_iterator nodes_end(RegionInfo *RI) {
    return nodes_iterator::end(getEntryNode(RI));
  }
};

template <> struct GraphTraits<RegionInfoPass*>
  : public GraphTraits<RegionInfo *> {
  using nodes_iterator =
      df_iterator<NodeRef, df_iterator_default_set<NodeRef>, false,
                  GraphTraits<FlatIt<NodeRef>>>;

  static NodeRef getEntryNode(RegionInfoPass *RI) {
    return GraphTraits<RegionInfo*>::getEntryNode(&RI->getRegionInfo());
  }

  static nodes_iterator nodes_begin(RegionInfoPass* RI) {
    return GraphTraits<RegionInfo*>::nodes_begin(&RI->getRegionInfo());
  }

  static nodes_iterator nodes_end(RegionInfoPass *RI) {
    return GraphTraits<RegionInfo*>::nodes_end(&RI->getRegionInfo());
  }
};

} // end namespace llvm

#endif // LLVM_ANALYSIS_REGIONITERATOR_H