1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
| //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// PBQP Graph class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
#define LLVM_CODEGEN_PBQP_GRAPH_H
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <vector>
namespace llvm {
namespace PBQP {
class GraphBase {
public:
using NodeId = unsigned;
using EdgeId = unsigned;
/// Returns a value representing an invalid (non-existent) node.
static NodeId invalidNodeId() {
return std::numeric_limits<NodeId>::max();
}
/// Returns a value representing an invalid (non-existent) edge.
static EdgeId invalidEdgeId() {
return std::numeric_limits<EdgeId>::max();
}
};
/// PBQP Graph class.
/// Instances of this class describe PBQP problems.
///
template <typename SolverT>
class Graph : public GraphBase {
private:
using CostAllocator = typename SolverT::CostAllocator;
public:
using RawVector = typename SolverT::RawVector;
using RawMatrix = typename SolverT::RawMatrix;
using Vector = typename SolverT::Vector;
using Matrix = typename SolverT::Matrix;
using VectorPtr = typename CostAllocator::VectorPtr;
using MatrixPtr = typename CostAllocator::MatrixPtr;
using NodeMetadata = typename SolverT::NodeMetadata;
using EdgeMetadata = typename SolverT::EdgeMetadata;
using GraphMetadata = typename SolverT::GraphMetadata;
private:
class NodeEntry {
public:
using AdjEdgeList = std::vector<EdgeId>;
using AdjEdgeIdx = AdjEdgeList::size_type;
using AdjEdgeItr = AdjEdgeList::const_iterator;
NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
static AdjEdgeIdx getInvalidAdjEdgeIdx() {
return std::numeric_limits<AdjEdgeIdx>::max();
}
AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
AdjEdgeIdx Idx = AdjEdgeIds.size();
AdjEdgeIds.push_back(EId);
return Idx;
}
void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
// Swap-and-pop for fast removal.
// 1) Update the adj index of the edge currently at back().
// 2) Move last Edge down to Idx.
// 3) pop_back()
// If Idx == size() - 1 then the setAdjEdgeIdx and swap are
// redundant, but both operations are cheap.
G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
AdjEdgeIds[Idx] = AdjEdgeIds.back();
AdjEdgeIds.pop_back();
}
const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
VectorPtr Costs;
NodeMetadata Metadata;
private:
AdjEdgeList AdjEdgeIds;
};
class EdgeEntry {
public:
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
: Costs(std::move(Costs)) {
NIds[0] = N1Id;
NIds[1] = N2Id;
ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
}
void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge already connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
}
void connect(Graph &G, EdgeId ThisEdgeId) {
connectToN(G, ThisEdgeId, 0);
connectToN(G, ThisEdgeId, 1);
}
void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
if (NId == NIds[0])
ThisEdgeAdjIdxs[0] = NewIdx;
else {
assert(NId == NIds[1] && "Edge not connected to NId");
ThisEdgeAdjIdxs[1] = NewIdx;
}
}
void disconnectFromN(Graph &G, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge not connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
}
void disconnectFrom(Graph &G, NodeId NId) {
if (NId == NIds[0])
disconnectFromN(G, 0);
else {
assert(NId == NIds[1] && "Edge does not connect NId");
disconnectFromN(G, 1);
}
}
NodeId getN1Id() const { return NIds[0]; }
NodeId getN2Id() const { return NIds[1]; }
MatrixPtr Costs;
EdgeMetadata Metadata;
private:
NodeId NIds[2];
typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
};
// ----- MEMBERS -----
GraphMetadata Metadata;
CostAllocator CostAlloc;
SolverT *Solver = nullptr;
using NodeVector = std::vector<NodeEntry>;
using FreeNodeVector = std::vector<NodeId>;
NodeVector Nodes;
FreeNodeVector FreeNodeIds;
using EdgeVector = std::vector<EdgeEntry>;
using FreeEdgeVector = std::vector<EdgeId>;
EdgeVector Edges;
FreeEdgeVector FreeEdgeIds;
Graph(const Graph &Other) {}
// ----- INTERNAL METHODS -----
NodeEntry &getNode(NodeId NId) {
assert(NId < Nodes.size() && "Out of bound NodeId");
return Nodes[NId];
}
const NodeEntry &getNode(NodeId NId) const {
assert(NId < Nodes.size() && "Out of bound NodeId");
return Nodes[NId];
}
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
NodeId addConstructedNode(NodeEntry N) {
NodeId NId = 0;
if (!FreeNodeIds.empty()) {
NId = FreeNodeIds.back();
FreeNodeIds.pop_back();
Nodes[NId] = std::move(N);
} else {
NId = Nodes.size();
Nodes.push_back(std::move(N));
}
return NId;
}
EdgeId addConstructedEdge(EdgeEntry E) {
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
EdgeId EId = 0;
if (!FreeEdgeIds.empty()) {
EId = FreeEdgeIds.back();
FreeEdgeIds.pop_back();
Edges[EId] = std::move(E);
} else {
EId = Edges.size();
Edges.push_back(std::move(E));
}
EdgeEntry &NE = getEdge(EId);
// Add the edge to the adjacency sets of its nodes.
NE.connect(*this, EId);
return EId;
}
void operator=(const Graph &Other) {}
public:
using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
class NodeItr {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = NodeId;
using difference_type = int;
using pointer = NodeId *;
using reference = NodeId &;
NodeItr(NodeId CurNId, const Graph &G)
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
}
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
bool operator!=(const NodeItr &O) const { return !(*this == O); }
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
NodeId operator*() const { return CurNId; }
private:
NodeId findNextInUse(NodeId NId) const {
while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
++NId;
}
return NId;
}
NodeId CurNId, EndNId;
const FreeNodeVector &FreeNodeIds;
};
class EdgeItr {
public:
EdgeItr(EdgeId CurEId, const Graph &G)
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
}
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
EdgeId operator*() const { return CurEId; }
private:
EdgeId findNextInUse(EdgeId EId) const {
while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
++EId;
}
return EId;
}
EdgeId CurEId, EndEId;
const FreeEdgeVector &FreeEdgeIds;
};
class NodeIdSet {
public:
NodeIdSet(const Graph &G) : G(G) {}
NodeItr begin() const { return NodeItr(0, G); }
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
bool empty() const { return G.Nodes.empty(); }
typename NodeVector::size_type size() const {
return G.Nodes.size() - G.FreeNodeIds.size();
}
private:
const Graph& G;
};
class EdgeIdSet {
public:
EdgeIdSet(const Graph &G) : G(G) {}
EdgeItr begin() const { return EdgeItr(0, G); }
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
bool empty() const { return G.Edges.empty(); }
typename NodeVector::size_type size() const {
return G.Edges.size() - G.FreeEdgeIds.size();
}
private:
const Graph& G;
};
class AdjEdgeIdSet {
public:
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
typename NodeEntry::AdjEdgeItr begin() const {
return NE.getAdjEdgeIds().begin();
}
typename NodeEntry::AdjEdgeItr end() const {
return NE.getAdjEdgeIds().end();
}
bool empty() const { return NE.getAdjEdgeIds().empty(); }
typename NodeEntry::AdjEdgeList::size_type size() const {
return NE.getAdjEdgeIds().size();
}
private:
const NodeEntry &NE;
};
/// Construct an empty PBQP graph.
Graph() = default;
/// Construct an empty PBQP graph with the given graph metadata.
Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
/// Get a reference to the graph metadata.
GraphMetadata& getMetadata() { return Metadata; }
/// Get a const-reference to the graph metadata.
const GraphMetadata& getMetadata() const { return Metadata; }
/// Lock this graph to the given solver instance in preparation
/// for running the solver. This method will call solver.handleAddNode for
/// each node in the graph, and handleAddEdge for each edge, to give the
/// solver an opportunity to set up any requried metadata.
void setSolver(SolverT &S) {
assert(!Solver && "Solver already set. Call unsetSolver().");
Solver = &S;
for (auto NId : nodeIds())
Solver->handleAddNode(NId);
for (auto EId : edgeIds())
Solver->handleAddEdge(EId);
}
/// Release from solver instance.
void unsetSolver() {
assert(Solver && "Solver not set.");
Solver = nullptr;
}
/// Add a node with the given costs.
/// @param Costs Cost vector for the new node.
/// @return Node iterator for the added node.
template <typename OtherVectorT>
NodeId addNode(OtherVectorT Costs) {
// Get cost vector from the problem domain
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// Add a node bypassing the cost allocator.
/// @param Costs Cost vector ptr for the new node (must be convertible to
/// VectorPtr).
/// @return Node iterator for the added node.
///
/// This method allows for fast addition of a node whose costs don't need
/// to be passed through the cost allocator. The most common use case for
/// this is when duplicating costs from an existing node (when using a
/// pooling allocator). These have already been uniqued, so we can avoid
/// re-constructing and re-uniquing them by attaching them directly to the
/// new node.
template <typename OtherVectorPtrT>
NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
NodeId NId = addConstructedNode(NodeEntry(Costs));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// Add an edge between the given nodes with the given costs.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @param Costs Cost matrix for new edge.
/// @return Edge iterator for the added edge.
template <typename OtherVectorT>
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// Add an edge bypassing the cost allocator.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @param Costs Cost matrix for new edge.
/// @return Edge iterator for the added edge.
///
/// This method allows for fast addition of an edge whose costs don't need
/// to be passed through the cost allocator. The most common use case for
/// this is when duplicating costs from an existing edge (when using a
/// pooling allocator). These have already been uniqued, so we can avoid
/// re-constructing and re-uniquing them by attaching them directly to the
/// new edge.
template <typename OtherMatrixPtrT>
NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
OtherMatrixPtrT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
getNodeCosts(N2Id).getLength() == Costs->getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// Returns true if the graph is empty.
bool empty() const { return NodeIdSet(*this).empty(); }
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
/// Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
/// Get the number of edges in the graph.
/// @return Number of edges in the graph.
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
/// Set a node's cost vector.
/// @param NId Node to update.
/// @param Costs New costs to set.
template <typename OtherVectorT>
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
if (Solver)
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
getNode(NId).Costs = AllocatedCosts;
}
/// Get a VectorPtr to a node's cost vector. Rarely useful - use
/// getNodeCosts where possible.
/// @param NId Node id.
/// @return VectorPtr to node cost vector.
///
/// This method is primarily useful for duplicating costs quickly by
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
/// getNodeCosts when dealing with node cost values.
const VectorPtr& getNodeCostsPtr(NodeId NId) const {
return getNode(NId).Costs;
}
/// Get a node's cost vector.
/// @param NId Node id.
/// @return Node cost vector.
const Vector& getNodeCosts(NodeId NId) const {
return *getNodeCostsPtr(NId);
}
NodeMetadata& getNodeMetadata(NodeId NId) {
return getNode(NId).Metadata;
}
const NodeMetadata& getNodeMetadata(NodeId NId) const {
return getNode(NId).Metadata;
}
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
return getNode(NId).getAdjEdgeIds().size();
}
/// Update an edge's cost matrix.
/// @param EId Edge id.
/// @param Costs New cost matrix.
template <typename OtherMatrixT>
void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
if (Solver)
Solver->handleUpdateCosts(EId, *AllocatedCosts);
getEdge(EId).Costs = AllocatedCosts;
}
/// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
/// getEdgeCosts where possible.
/// @param EId Edge id.
/// @return MatrixPtr to edge cost matrix.
///
/// This method is primarily useful for duplicating costs quickly by
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
/// getEdgeCosts when dealing with edge cost values.
const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
return getEdge(EId).Costs;
}
/// Get an edge's cost matrix.
/// @param EId Edge id.
/// @return Edge cost matrix.
const Matrix& getEdgeCosts(EdgeId EId) const {
return *getEdge(EId).Costs;
}
EdgeMetadata& getEdgeMetadata(EdgeId EId) {
return getEdge(EId).Metadata;
}
const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
return getEdge(EId).Metadata;
}
/// Get the first node connected to this edge.
/// @param EId Edge id.
/// @return The first node connected to the given edge.
NodeId getEdgeNode1Id(EdgeId EId) const {
return getEdge(EId).getN1Id();
}
/// Get the second node connected to this edge.
/// @param EId Edge id.
/// @return The second node connected to the given edge.
NodeId getEdgeNode2Id(EdgeId EId) const {
return getEdge(EId).getN2Id();
}
/// Get the "other" node connected to this edge.
/// @param EId Edge id.
/// @param NId Node id for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
if (E.getN1Id() == NId) {
return E.getN2Id();
} // else
return E.getN1Id();
}
/// Get the edge connecting two nodes.
/// @param N1Id First node id.
/// @param N2Id Second node id.
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
for (auto AEId : adjEdgeIds(N1Id)) {
if ((getEdgeNode1Id(AEId) == N2Id) ||
(getEdgeNode2Id(AEId) == N2Id)) {
return AEId;
}
}
return invalidEdgeId();
}
/// Remove a node from the graph.
/// @param NId Node id.
void removeNode(NodeId NId) {
if (Solver)
Solver->handleRemoveNode(NId);
NodeEntry &N = getNode(NId);
// TODO: Can this be for-each'd?
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
AEEnd = N.adjEdgesEnd();
AEItr != AEEnd;) {
EdgeId EId = *AEItr;
++AEItr;
removeEdge(EId);
}
FreeNodeIds.push_back(NId);
}
/// Disconnect an edge from the given node.
///
/// Removes the given edge from the adjacency list of the given node.
/// This operation leaves the edge in an 'asymmetric' state: It will no
/// longer appear in an iteration over the given node's (NId's) edges, but
/// will appear in an iteration over the 'other', unnamed node's edges.
///
/// This does not correspond to any normal graph operation, but exists to
/// support efficient PBQP graph-reduction based solvers. It is used to
/// 'effectively' remove the unnamed node from the graph while the solver
/// is performing the reduction. The solver will later call reconnectNode
/// to restore the edge in the named node's adjacency list.
///
/// Since the degree of a node is the number of connected edges,
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
/// drop by 1.
///
/// A disconnected edge WILL still appear in an iteration over the graph
/// edges.
///
/// A disconnected edge should not be removed from the graph, it should be
/// reconnected first.
///
/// A disconnected edge can be reconnected by calling the reconnectEdge
/// method.
void disconnectEdge(EdgeId EId, NodeId NId) {
if (Solver)
Solver->handleDisconnectEdge(EId, NId);
EdgeEntry &E = getEdge(EId);
E.disconnectFrom(*this, NId);
}
/// Convenience method to disconnect all neighbours from the given
/// node.
void disconnectAllNeighborsFromNode(NodeId NId) {
for (auto AEId : adjEdgeIds(NId))
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
}
/// Re-attach an edge to its nodes.
///
/// Adds an edge that had been previously disconnected back into the
/// adjacency set of the nodes that the edge connects.
void reconnectEdge(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
E.connectTo(*this, EId, NId);
if (Solver)
Solver->handleReconnectEdge(EId, NId);
}
/// Remove an edge from the graph.
/// @param EId Edge id.
void removeEdge(EdgeId EId) {
if (Solver)
Solver->handleRemoveEdge(EId);
EdgeEntry &E = getEdge(EId);
E.disconnect();
FreeEdgeIds.push_back(EId);
Edges[EId].invalidate();
}
/// Remove all nodes and edges from the graph.
void clear() {
Nodes.clear();
FreeNodeIds.clear();
Edges.clear();
FreeEdgeIds.clear();
}
};
} // end namespace PBQP
} // end namespace llvm
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
|