reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
//===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares generic functions to read and write endian specific data.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_ENDIAN_H
#define LLVM_SUPPORT_ENDIAN_H

#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SwapByteOrder.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <type_traits>

namespace llvm {
namespace support {

enum endianness {big, little, native};

// These are named values for common alignments.
enum {aligned = 0, unaligned = 1};

namespace detail {

/// ::value is either alignment, or alignof(T) if alignment is 0.
template<class T, int alignment>
struct PickAlignment {
 enum { value = alignment == 0 ? alignof(T) : alignment };
};

} // end namespace detail

namespace endian {

constexpr endianness system_endianness() {
  return sys::IsBigEndianHost ? big : little;
}

template <typename value_type>
inline value_type byte_swap(value_type value, endianness endian) {
  if ((endian != native) && (endian != system_endianness()))
    sys::swapByteOrder(value);
  return value;
}

/// Swap the bytes of value to match the given endianness.
template<typename value_type, endianness endian>
inline value_type byte_swap(value_type value) {
  return byte_swap(value, endian);
}

/// Read a value of a particular endianness from memory.
template <typename value_type, std::size_t alignment>
inline value_type read(const void *memory, endianness endian) {
  value_type ret;

  memcpy(&ret,
         LLVM_ASSUME_ALIGNED(
             memory, (detail::PickAlignment<value_type, alignment>::value)),
         sizeof(value_type));
  return byte_swap<value_type>(ret, endian);
}

template<typename value_type,
         endianness endian,
         std::size_t alignment>
inline value_type read(const void *memory) {
  return read<value_type, alignment>(memory, endian);
}

/// Read a value of a particular endianness from a buffer, and increment the
/// buffer past that value.
template <typename value_type, std::size_t alignment, typename CharT>
inline value_type readNext(const CharT *&memory, endianness endian) {
  value_type ret = read<value_type, alignment>(memory, endian);
  memory += sizeof(value_type);
  return ret;
}

template<typename value_type, endianness endian, std::size_t alignment,
         typename CharT>
inline value_type readNext(const CharT *&memory) {
  return readNext<value_type, alignment, CharT>(memory, endian);
}

/// Write a value to memory with a particular endianness.
template <typename value_type, std::size_t alignment>
inline void write(void *memory, value_type value, endianness endian) {
  value = byte_swap<value_type>(value, endian);
  memcpy(LLVM_ASSUME_ALIGNED(
             memory, (detail::PickAlignment<value_type, alignment>::value)),
         &value, sizeof(value_type));
}

template<typename value_type,
         endianness endian,
         std::size_t alignment>
inline void write(void *memory, value_type value) {
  write<value_type, alignment>(memory, value, endian);
}

template <typename value_type>
using make_unsigned_t = typename std::make_unsigned<value_type>::type;

/// Read a value of a particular endianness from memory, for a location
/// that starts at the given bit offset within the first byte.
template <typename value_type, endianness endian, std::size_t alignment>
inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
  assert(startBit < 8);
  if (startBit == 0)
    return read<value_type, endian, alignment>(memory);
  else {
    // Read two values and compose the result from them.
    value_type val[2];
    memcpy(&val[0],
           LLVM_ASSUME_ALIGNED(
               memory, (detail::PickAlignment<value_type, alignment>::value)),
           sizeof(value_type) * 2);
    val[0] = byte_swap<value_type, endian>(val[0]);
    val[1] = byte_swap<value_type, endian>(val[1]);

    // Shift bits from the lower value into place.
    make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
    // Mask off upper bits after right shift in case of signed type.
    make_unsigned_t<value_type> numBitsFirstVal =
        (sizeof(value_type) * 8) - startBit;
    lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;

    // Get the bits from the upper value.
    make_unsigned_t<value_type> upperVal =
        val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
    // Shift them in to place.
    upperVal <<= numBitsFirstVal;

    return lowerVal | upperVal;
  }
}

/// Write a value to memory with a particular endianness, for a location
/// that starts at the given bit offset within the first byte.
template <typename value_type, endianness endian, std::size_t alignment>
inline void writeAtBitAlignment(void *memory, value_type value,
                                uint64_t startBit) {
  assert(startBit < 8);
  if (startBit == 0)
    write<value_type, endian, alignment>(memory, value);
  else {
    // Read two values and shift the result into them.
    value_type val[2];
    memcpy(&val[0],
           LLVM_ASSUME_ALIGNED(
               memory, (detail::PickAlignment<value_type, alignment>::value)),
           sizeof(value_type) * 2);
    val[0] = byte_swap<value_type, endian>(val[0]);
    val[1] = byte_swap<value_type, endian>(val[1]);

    // Mask off any existing bits in the upper part of the lower value that
    // we want to replace.
    val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
    make_unsigned_t<value_type> numBitsFirstVal =
        (sizeof(value_type) * 8) - startBit;
    make_unsigned_t<value_type> lowerVal = value;
    if (startBit > 0) {
      // Mask off the upper bits in the new value that are not going to go into
      // the lower value. This avoids a left shift of a negative value, which
      // is undefined behavior.
      lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
      // Now shift the new bits into place
      lowerVal <<= startBit;
    }
    val[0] |= lowerVal;

    // Mask off any existing bits in the lower part of the upper value that
    // we want to replace.
    val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
    // Next shift the bits that go into the upper value into position.
    make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
    // Mask off upper bits after right shift in case of signed type.
    upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
    val[1] |= upperVal;

    // Finally, rewrite values.
    val[0] = byte_swap<value_type, endian>(val[0]);
    val[1] = byte_swap<value_type, endian>(val[1]);
    memcpy(LLVM_ASSUME_ALIGNED(
               memory, (detail::PickAlignment<value_type, alignment>::value)),
           &val[0], sizeof(value_type) * 2);
  }
}

} // end namespace endian

namespace detail {

template <typename ValueType, endianness Endian, std::size_t Alignment,
          std::size_t ALIGN = PickAlignment<ValueType, Alignment>::value>
struct packed_endian_specific_integral {
  using value_type = ValueType;
  static constexpr endianness endian = Endian;
  static constexpr std::size_t alignment = Alignment;

  packed_endian_specific_integral() = default;

  explicit packed_endian_specific_integral(value_type val) { *this = val; }

  operator value_type() const {
    return endian::read<value_type, endian, alignment>(
      (const void*)Value.buffer);
  }

  void operator=(value_type newValue) {
    endian::write<value_type, endian, alignment>(
      (void*)Value.buffer, newValue);
  }

  packed_endian_specific_integral &operator+=(value_type newValue) {
    *this = *this + newValue;
    return *this;
  }

  packed_endian_specific_integral &operator-=(value_type newValue) {
    *this = *this - newValue;
    return *this;
  }

  packed_endian_specific_integral &operator|=(value_type newValue) {
    *this = *this | newValue;
    return *this;
  }

  packed_endian_specific_integral &operator&=(value_type newValue) {
    *this = *this & newValue;
    return *this;
  }

private:
  struct {
    alignas(ALIGN) char buffer[sizeof(value_type)];
  } Value;

public:
  struct ref {
    explicit ref(void *Ptr) : Ptr(Ptr) {}

    operator value_type() const {
      return endian::read<value_type, endian, alignment>(Ptr);
    }

    void operator=(value_type NewValue) {
      endian::write<value_type, endian, alignment>(Ptr, NewValue);
    }

  private:
    void *Ptr;
  };
};

} // end namespace detail

using ulittle16_t =
    detail::packed_endian_specific_integral<uint16_t, little, unaligned>;
using ulittle32_t =
    detail::packed_endian_specific_integral<uint32_t, little, unaligned>;
using ulittle64_t =
    detail::packed_endian_specific_integral<uint64_t, little, unaligned>;

using little16_t =
    detail::packed_endian_specific_integral<int16_t, little, unaligned>;
using little32_t =
    detail::packed_endian_specific_integral<int32_t, little, unaligned>;
using little64_t =
    detail::packed_endian_specific_integral<int64_t, little, unaligned>;

using aligned_ulittle16_t =
    detail::packed_endian_specific_integral<uint16_t, little, aligned>;
using aligned_ulittle32_t =
    detail::packed_endian_specific_integral<uint32_t, little, aligned>;
using aligned_ulittle64_t =
    detail::packed_endian_specific_integral<uint64_t, little, aligned>;

using aligned_little16_t =
    detail::packed_endian_specific_integral<int16_t, little, aligned>;
using aligned_little32_t =
    detail::packed_endian_specific_integral<int32_t, little, aligned>;
using aligned_little64_t =
    detail::packed_endian_specific_integral<int64_t, little, aligned>;

using ubig16_t =
    detail::packed_endian_specific_integral<uint16_t, big, unaligned>;
using ubig32_t =
    detail::packed_endian_specific_integral<uint32_t, big, unaligned>;
using ubig64_t =
    detail::packed_endian_specific_integral<uint64_t, big, unaligned>;

using big16_t =
    detail::packed_endian_specific_integral<int16_t, big, unaligned>;
using big32_t =
    detail::packed_endian_specific_integral<int32_t, big, unaligned>;
using big64_t =
    detail::packed_endian_specific_integral<int64_t, big, unaligned>;

using aligned_ubig16_t =
    detail::packed_endian_specific_integral<uint16_t, big, aligned>;
using aligned_ubig32_t =
    detail::packed_endian_specific_integral<uint32_t, big, aligned>;
using aligned_ubig64_t =
    detail::packed_endian_specific_integral<uint64_t, big, aligned>;

using aligned_big16_t =
    detail::packed_endian_specific_integral<int16_t, big, aligned>;
using aligned_big32_t =
    detail::packed_endian_specific_integral<int32_t, big, aligned>;
using aligned_big64_t =
    detail::packed_endian_specific_integral<int64_t, big, aligned>;

using unaligned_uint16_t =
    detail::packed_endian_specific_integral<uint16_t, native, unaligned>;
using unaligned_uint32_t =
    detail::packed_endian_specific_integral<uint32_t, native, unaligned>;
using unaligned_uint64_t =
    detail::packed_endian_specific_integral<uint64_t, native, unaligned>;

using unaligned_int16_t =
    detail::packed_endian_specific_integral<int16_t, native, unaligned>;
using unaligned_int32_t =
    detail::packed_endian_specific_integral<int32_t, native, unaligned>;
using unaligned_int64_t =
    detail::packed_endian_specific_integral<int64_t, native, unaligned>;

template <typename T>
using little_t = detail::packed_endian_specific_integral<T, little, unaligned>;
template <typename T>
using big_t = detail::packed_endian_specific_integral<T, big, unaligned>;

template <typename T>
using aligned_little_t =
    detail::packed_endian_specific_integral<T, little, aligned>;
template <typename T>
using aligned_big_t = detail::packed_endian_specific_integral<T, big, aligned>;

namespace endian {

template <typename T> inline T read(const void *P, endianness E) {
  return read<T, unaligned>(P, E);
}

template <typename T, endianness E> inline T read(const void *P) {
  return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
}

inline uint16_t read16(const void *P, endianness E) {
  return read<uint16_t>(P, E);
}
inline uint32_t read32(const void *P, endianness E) {
  return read<uint32_t>(P, E);
}
inline uint64_t read64(const void *P, endianness E) {
  return read<uint64_t>(P, E);
}

template <endianness E> inline uint16_t read16(const void *P) {
  return read<uint16_t, E>(P);
}
template <endianness E> inline uint32_t read32(const void *P) {
  return read<uint32_t, E>(P);
}
template <endianness E> inline uint64_t read64(const void *P) {
  return read<uint64_t, E>(P);
}

inline uint16_t read16le(const void *P) { return read16<little>(P); }
inline uint32_t read32le(const void *P) { return read32<little>(P); }
inline uint64_t read64le(const void *P) { return read64<little>(P); }
inline uint16_t read16be(const void *P) { return read16<big>(P); }
inline uint32_t read32be(const void *P) { return read32<big>(P); }
inline uint64_t read64be(const void *P) { return read64<big>(P); }

template <typename T> inline void write(void *P, T V, endianness E) {
  write<T, unaligned>(P, V, E);
}

template <typename T, endianness E> inline void write(void *P, T V) {
  *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
}

inline void write16(void *P, uint16_t V, endianness E) {
  write<uint16_t>(P, V, E);
}
inline void write32(void *P, uint32_t V, endianness E) {
  write<uint32_t>(P, V, E);
}
inline void write64(void *P, uint64_t V, endianness E) {
  write<uint64_t>(P, V, E);
}

template <endianness E> inline void write16(void *P, uint16_t V) {
  write<uint16_t, E>(P, V);
}
template <endianness E> inline void write32(void *P, uint32_t V) {
  write<uint32_t, E>(P, V);
}
template <endianness E> inline void write64(void *P, uint64_t V) {
  write<uint64_t, E>(P, V);
}

inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }

} // end namespace endian

} // end namespace support
} // end namespace llvm

#endif // LLVM_SUPPORT_ENDIAN_H