1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
| //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a set of templates that efficiently compute a dominator
/// tree over a generic graph. This is used typically in LLVM for fast
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
/// graph types.
///
/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
/// on the graph's NodeRef. The NodeRef should be a pointer and,
/// NodeRef->getParent() must return the parent node that is also a pointer.
///
/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
#define LLVM_SUPPORT_GENERICDOMTREE_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CFGUpdate.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
namespace llvm {
template <typename NodeT, bool IsPostDom>
class DominatorTreeBase;
namespace DomTreeBuilder {
template <typename DomTreeT>
struct SemiNCAInfo;
} // namespace DomTreeBuilder
/// Base class for the actual dominator tree node.
template <class NodeT> class DomTreeNodeBase {
friend class PostDominatorTree;
friend class DominatorTreeBase<NodeT, false>;
friend class DominatorTreeBase<NodeT, true>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
NodeT *TheBB;
DomTreeNodeBase *IDom;
unsigned Level;
std::vector<DomTreeNodeBase *> Children;
mutable unsigned DFSNumIn = ~0;
mutable unsigned DFSNumOut = ~0;
public:
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
: TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
using iterator = typename std::vector<DomTreeNodeBase *>::iterator;
using const_iterator =
typename std::vector<DomTreeNodeBase *>::const_iterator;
iterator begin() { return Children.begin(); }
iterator end() { return Children.end(); }
const_iterator begin() const { return Children.begin(); }
const_iterator end() const { return Children.end(); }
NodeT *getBlock() const { return TheBB; }
DomTreeNodeBase *getIDom() const { return IDom; }
unsigned getLevel() const { return Level; }
const std::vector<DomTreeNodeBase *> &getChildren() const { return Children; }
std::unique_ptr<DomTreeNodeBase> addChild(
std::unique_ptr<DomTreeNodeBase> C) {
Children.push_back(C.get());
return C;
}
size_t getNumChildren() const { return Children.size(); }
void clearAllChildren() { Children.clear(); }
bool compare(const DomTreeNodeBase *Other) const {
if (getNumChildren() != Other->getNumChildren())
return true;
if (Level != Other->Level) return true;
SmallPtrSet<const NodeT *, 4> OtherChildren;
for (const DomTreeNodeBase *I : *Other) {
const NodeT *Nd = I->getBlock();
OtherChildren.insert(Nd);
}
for (const DomTreeNodeBase *I : *this) {
const NodeT *N = I->getBlock();
if (OtherChildren.count(N) == 0)
return true;
}
return false;
}
void setIDom(DomTreeNodeBase *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom == NewIDom) return;
auto I = find(IDom->Children, this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
UpdateLevel();
}
/// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
/// in the dominator tree. They are only guaranteed valid if
/// updateDFSNumbers() has been called.
unsigned getDFSNumIn() const { return DFSNumIn; }
unsigned getDFSNumOut() const { return DFSNumOut; }
private:
// Return true if this node is dominated by other. Use this only if DFS info
// is valid.
bool DominatedBy(const DomTreeNodeBase *other) const {
return this->DFSNumIn >= other->DFSNumIn &&
this->DFSNumOut <= other->DFSNumOut;
}
void UpdateLevel() {
assert(IDom);
if (Level == IDom->Level + 1) return;
SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
while (!WorkStack.empty()) {
DomTreeNodeBase *Current = WorkStack.pop_back_val();
Current->Level = Current->IDom->Level + 1;
for (DomTreeNodeBase *C : *Current) {
assert(C->IDom);
if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
}
}
}
};
template <class NodeT>
raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
if (Node->getBlock())
Node->getBlock()->printAsOperand(O, false);
else
O << " <<exit node>>";
O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
<< Node->getLevel() << "]\n";
return O;
}
template <class NodeT>
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
unsigned Lev) {
O.indent(2 * Lev) << "[" << Lev << "] " << N;
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
E = N->end();
I != E; ++I)
PrintDomTree<NodeT>(*I, O, Lev + 1);
}
namespace DomTreeBuilder {
// The routines below are provided in a separate header but referenced here.
template <typename DomTreeT>
void Calculate(DomTreeT &DT);
template <typename DomTreeT>
void CalculateWithUpdates(DomTreeT &DT,
ArrayRef<typename DomTreeT::UpdateType> Updates);
template <typename DomTreeT>
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To);
template <typename DomTreeT>
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To);
template <typename DomTreeT>
void ApplyUpdates(DomTreeT &DT,
ArrayRef<typename DomTreeT::UpdateType> Updates);
template <typename DomTreeT>
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
} // namespace DomTreeBuilder
/// Core dominator tree base class.
///
/// This class is a generic template over graph nodes. It is instantiated for
/// various graphs in the LLVM IR or in the code generator.
template <typename NodeT, bool IsPostDom>
class DominatorTreeBase {
public:
static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
"Currently DominatorTreeBase supports only pointer nodes");
using NodeType = NodeT;
using NodePtr = NodeT *;
using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
static_assert(std::is_pointer<ParentPtr>::value,
"Currently NodeT's parent must be a pointer type");
using ParentType = typename std::remove_pointer<ParentPtr>::type;
static constexpr bool IsPostDominator = IsPostDom;
using UpdateType = cfg::Update<NodePtr>;
using UpdateKind = cfg::UpdateKind;
static constexpr UpdateKind Insert = UpdateKind::Insert;
static constexpr UpdateKind Delete = UpdateKind::Delete;
enum class VerificationLevel { Fast, Basic, Full };
protected:
// Dominators always have a single root, postdominators can have more.
SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
using DomTreeNodeMapType =
DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
DomTreeNodeMapType DomTreeNodes;
DomTreeNodeBase<NodeT> *RootNode = nullptr;
ParentPtr Parent = nullptr;
mutable bool DFSInfoValid = false;
mutable unsigned int SlowQueries = 0;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
public:
DominatorTreeBase() {}
DominatorTreeBase(DominatorTreeBase &&Arg)
: Roots(std::move(Arg.Roots)),
DomTreeNodes(std::move(Arg.DomTreeNodes)),
RootNode(Arg.RootNode),
Parent(Arg.Parent),
DFSInfoValid(Arg.DFSInfoValid),
SlowQueries(Arg.SlowQueries) {
Arg.wipe();
}
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
Roots = std::move(RHS.Roots);
DomTreeNodes = std::move(RHS.DomTreeNodes);
RootNode = RHS.RootNode;
Parent = RHS.Parent;
DFSInfoValid = RHS.DFSInfoValid;
SlowQueries = RHS.SlowQueries;
RHS.wipe();
return *this;
}
DominatorTreeBase(const DominatorTreeBase &) = delete;
DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
const SmallVectorImpl<NodeT *> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominator; }
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
bool compare(const DominatorTreeBase &Other) const {
if (Parent != Other.Parent) return true;
if (Roots.size() != Other.Roots.size())
return true;
if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
return true;
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
return true;
for (const auto &DomTreeNode : DomTreeNodes) {
NodeT *BB = DomTreeNode.first;
typename DomTreeNodeMapType::const_iterator OI =
OtherDomTreeNodes.find(BB);
if (OI == OtherDomTreeNodes.end())
return true;
DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
if (MyNd.compare(&OtherNd))
return true;
}
return false;
}
void releaseMemory() { reset(); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class. The result
/// may (but is not required to) be null for a forward (backwards)
/// statically unreachable block.
DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
auto I = DomTreeNodes.find(BB);
if (I != DomTreeNodes.end())
return I->second.get();
return nullptr;
}
/// See getNode.
DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
return getNode(BB);
}
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
/// this root may be a node with the block == NULL. This is the case when
/// there are multiple exit nodes from a particular function. Consumers of
/// post-dominance information must be capable of dealing with this
/// possibility.
///
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
/// Get all nodes dominated by R, including R itself.
void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
Result.clear();
const DomTreeNodeBase<NodeT> *RN = getNode(R);
if (!RN)
return; // If R is unreachable, it will not be present in the DOM tree.
SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
WL.push_back(RN);
while (!WL.empty()) {
const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
Result.push_back(N->getBlock());
WL.append(N->begin(), N->end());
}
}
/// properlyDominates - Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation!
///
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
if (!A || !B)
return false;
if (A == B)
return false;
return dominates(A, B);
}
bool properlyDominates(const NodeT *A, const NodeT *B) const;
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
bool isReachableFromEntry(const NodeT *A) const {
assert(!this->isPostDominator() &&
"This is not implemented for post dominators");
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
}
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
///
bool dominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
// A node trivially dominates itself.
if (B == A)
return true;
// An unreachable node is dominated by anything.
if (!isReachableFromEntry(B))
return true;
// And dominates nothing.
if (!isReachableFromEntry(A))
return false;
if (B->getIDom() == A) return true;
if (A->getIDom() == B) return false;
// A can only dominate B if it is higher in the tree.
if (A->getLevel() >= B->getLevel()) return false;
// Compare the result of the tree walk and the dfs numbers, if expensive
// checks are enabled.
#ifdef EXPENSIVE_CHECKS
assert((!DFSInfoValid ||
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
"Tree walk disagrees with dfs numbers!");
#endif
if (DFSInfoValid)
return B->DominatedBy(A);
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++;
if (SlowQueries > 32) {
updateDFSNumbers();
return B->DominatedBy(A);
}
return dominatedBySlowTreeWalk(A, B);
}
bool dominates(const NodeT *A, const NodeT *B) const;
NodeT *getRoot() const {
assert(this->Roots.size() == 1 && "Should always have entry node!");
return this->Roots[0];
}
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return nullptr.
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
assert(A && B && "Pointers are not valid");
assert(A->getParent() == B->getParent() &&
"Two blocks are not in same function");
// If either A or B is a entry block then it is nearest common dominator
// (for forward-dominators).
if (!isPostDominator()) {
NodeT &Entry = A->getParent()->front();
if (A == &Entry || B == &Entry)
return &Entry;
}
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
if (!NodeA || !NodeB) return nullptr;
// Use level information to go up the tree until the levels match. Then
// continue going up til we arrive at the same node.
while (NodeA && NodeA != NodeB) {
if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
NodeA = NodeA->IDom;
}
return NodeA ? NodeA->getBlock() : nullptr;
}
const NodeT *findNearestCommonDominator(const NodeT *A,
const NodeT *B) const {
// Cast away the const qualifiers here. This is ok since
// const is re-introduced on the return type.
return findNearestCommonDominator(const_cast<NodeT *>(A),
const_cast<NodeT *>(B));
}
bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
return isPostDominator() && !A->getBlock();
}
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
/// Inform the dominator tree about a sequence of CFG edge insertions and
/// deletions and perform a batch update on the tree.
///
/// This function should be used when there were multiple CFG updates after
/// the last dominator tree update. It takes care of performing the updates
/// in sync with the CFG and optimizes away the redundant operations that
/// cancel each other.
/// The functions expects the sequence of updates to be balanced. Eg.:
/// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
/// logically it results in a single insertions.
/// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
/// sense to insert the same edge twice.
///
/// What's more, the functions assumes that it's safe to ask every node in the
/// CFG about its children and inverse children. This implies that deletions
/// of CFG edges must not delete the CFG nodes before calling this function.
///
/// The applyUpdates function can reorder the updates and remove redundant
/// ones internally. The batch updater is also able to detect sequences of
/// zero and exactly one update -- it's optimized to do less work in these
/// cases.
///
/// Note that for postdominators it automatically takes care of applying
/// updates on reverse edges internally (so there's no need to swap the
/// From and To pointers when constructing DominatorTree::UpdateType).
/// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
/// with the same template parameter T.
///
/// \param Updates An unordered sequence of updates to perform.
///
void applyUpdates(ArrayRef<UpdateType> Updates) {
DomTreeBuilder::ApplyUpdates(*this, Updates);
}
/// Inform the dominator tree about a CFG edge insertion and update the tree.
///
/// This function has to be called just before or just after making the update
/// on the actual CFG. There cannot be any other updates that the dominator
/// tree doesn't know about.
///
/// Note that for postdominators it automatically takes care of inserting
/// a reverse edge internally (so there's no need to swap the parameters).
///
void insertEdge(NodeT *From, NodeT *To) {
assert(From);
assert(To);
assert(From->getParent() == Parent);
assert(To->getParent() == Parent);
DomTreeBuilder::InsertEdge(*this, From, To);
}
/// Inform the dominator tree about a CFG edge deletion and update the tree.
///
/// This function has to be called just after making the update on the actual
/// CFG. An internal functions checks if the edge doesn't exist in the CFG in
/// DEBUG mode. There cannot be any other updates that the
/// dominator tree doesn't know about.
///
/// Note that for postdominators it automatically takes care of deleting
/// a reverse edge internally (so there's no need to swap the parameters).
///
void deleteEdge(NodeT *From, NodeT *To) {
assert(From);
assert(To);
assert(From->getParent() == Parent);
assert(To->getParent() == Parent);
DomTreeBuilder::DeleteEdge(*this, From, To);
}
/// Add a new node to the dominator tree information.
///
/// This creates a new node as a child of DomBB dominator node, linking it
/// into the children list of the immediate dominator.
///
/// \param BB New node in CFG.
/// \param DomBB CFG node that is dominator for BB.
/// \returns New dominator tree node that represents new CFG node.
///
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
assert(IDomNode && "Not immediate dominator specified for block!");
DFSInfoValid = false;
return (DomTreeNodes[BB] = IDomNode->addChild(
std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
}
/// Add a new node to the forward dominator tree and make it a new root.
///
/// \param BB New node in CFG.
/// \returns New dominator tree node that represents new CFG node.
///
DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
assert(!this->isPostDominator() &&
"Cannot change root of post-dominator tree");
DFSInfoValid = false;
DomTreeNodeBase<NodeT> *NewNode = (DomTreeNodes[BB] =
std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)).get();
if (Roots.empty()) {
addRoot(BB);
} else {
assert(Roots.size() == 1);
NodeT *OldRoot = Roots.front();
auto &OldNode = DomTreeNodes[OldRoot];
OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
OldNode->IDom = NewNode;
OldNode->UpdateLevel();
Roots[0] = BB;
}
return RootNode = NewNode;
}
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
DomTreeNodeBase<NodeT> *NewIDom) {
assert(N && NewIDom && "Cannot change null node pointers!");
DFSInfoValid = false;
N->setIDom(NewIDom);
}
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
changeImmediateDominator(getNode(BB), getNode(NewBB));
}
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
void eraseNode(NodeT *BB) {
DomTreeNodeBase<NodeT> *Node = getNode(BB);
assert(Node && "Removing node that isn't in dominator tree.");
assert(Node->getChildren().empty() && "Node is not a leaf node.");
DFSInfoValid = false;
// Remove node from immediate dominator's children list.
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
if (IDom) {
const auto I = find(IDom->Children, Node);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
}
DomTreeNodes.erase(BB);
if (!IsPostDom) return;
// Remember to update PostDominatorTree roots.
auto RIt = llvm::find(Roots, BB);
if (RIt != Roots.end()) {
std::swap(*RIt, Roots.back());
Roots.pop_back();
}
}
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
void splitBlock(NodeT *NewBB) {
if (IsPostDominator)
Split<Inverse<NodeT *>>(NewBB);
else
Split<NodeT *>(NewBB);
}
/// print - Convert to human readable form
///
void print(raw_ostream &O) const {
O << "=============================--------------------------------\n";
if (IsPostDominator)
O << "Inorder PostDominator Tree: ";
else
O << "Inorder Dominator Tree: ";
if (!DFSInfoValid)
O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
O << "\n";
// The postdom tree can have a null root if there are no returns.
if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
O << "Roots: ";
for (const NodePtr Block : Roots) {
Block->printAsOperand(O, false);
O << " ";
}
O << "\n";
}
public:
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void updateDFSNumbers() const {
if (DFSInfoValid) {
SlowQueries = 0;
return;
}
SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
typename DomTreeNodeBase<NodeT>::const_iterator>,
32> WorkStack;
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
assert((!Parent || ThisRoot) && "Empty constructed DomTree");
if (!ThisRoot)
return;
// Both dominators and postdominators have a single root node. In the case
// case of PostDominatorTree, this node is a virtual root.
WorkStack.push_back({ThisRoot, ThisRoot->begin()});
unsigned DFSNum = 0;
ThisRoot->DFSNumIn = DFSNum++;
while (!WorkStack.empty()) {
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
const auto ChildIt = WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
if (ChildIt == Node->end()) {
Node->DFSNumOut = DFSNum++;
WorkStack.pop_back();
} else {
// Otherwise, recursively visit this child.
const DomTreeNodeBase<NodeT> *Child = *ChildIt;
++WorkStack.back().second;
WorkStack.push_back({Child, Child->begin()});
Child->DFSNumIn = DFSNum++;
}
}
SlowQueries = 0;
DFSInfoValid = true;
}
/// recalculate - compute a dominator tree for the given function
void recalculate(ParentType &Func) {
Parent = &Func;
DomTreeBuilder::Calculate(*this);
}
void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
Parent = &Func;
DomTreeBuilder::CalculateWithUpdates(*this, Updates);
}
/// verify - checks if the tree is correct. There are 3 level of verification:
/// - Full -- verifies if the tree is correct by making sure all the
/// properties (including the parent and the sibling property)
/// hold.
/// Takes O(N^3) time.
///
/// - Basic -- checks if the tree is correct, but compares it to a freshly
/// constructed tree instead of checking the sibling property.
/// Takes O(N^2) time.
///
/// - Fast -- checks basic tree structure and compares it with a freshly
/// constructed tree.
/// Takes O(N^2) time worst case, but is faster in practise (same
/// as tree construction).
bool verify(VerificationLevel VL = VerificationLevel::Full) const {
return DomTreeBuilder::Verify(*this, VL);
}
protected:
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
void reset() {
DomTreeNodes.clear();
Roots.clear();
RootNode = nullptr;
Parent = nullptr;
DFSInfoValid = false;
SlowQueries = 0;
}
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
template <class N>
void Split(typename GraphTraits<N>::NodeRef NewBB) {
using GraphT = GraphTraits<N>;
using NodeRef = typename GraphT::NodeRef;
assert(std::distance(GraphT::child_begin(NewBB),
GraphT::child_end(NewBB)) == 1 &&
"NewBB should have a single successor!");
NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
std::vector<NodeRef> PredBlocks;
for (const auto &Pred : children<Inverse<N>>(NewBB))
PredBlocks.push_back(Pred);
assert(!PredBlocks.empty() && "No predblocks?");
bool NewBBDominatesNewBBSucc = true;
for (const auto &Pred : children<Inverse<N>>(NewBBSucc)) {
if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
isReachableFromEntry(Pred)) {
NewBBDominatesNewBBSucc = false;
break;
}
}
// Find NewBB's immediate dominator and create new dominator tree node for
// NewBB.
NodeT *NewBBIDom = nullptr;
unsigned i = 0;
for (i = 0; i < PredBlocks.size(); ++i)
if (isReachableFromEntry(PredBlocks[i])) {
NewBBIDom = PredBlocks[i];
break;
}
// It's possible that none of the predecessors of NewBB are reachable;
// in that case, NewBB itself is unreachable, so nothing needs to be
// changed.
if (!NewBBIDom) return;
for (i = i + 1; i < PredBlocks.size(); ++i) {
if (isReachableFromEntry(PredBlocks[i]))
NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
}
// Create the new dominator tree node... and set the idom of NewBB.
DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
// If NewBB strictly dominates other blocks, then it is now the immediate
// dominator of NewBBSucc. Update the dominator tree as appropriate.
if (NewBBDominatesNewBBSucc) {
DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
changeImmediateDominator(NewBBSuccNode, NewBBNode);
}
}
private:
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
assert(A != B);
assert(isReachableFromEntry(B));
assert(isReachableFromEntry(A));
const unsigned ALevel = A->getLevel();
const DomTreeNodeBase<NodeT> *IDom;
// Don't walk nodes above A's subtree. When we reach A's level, we must
// either find A or be in some other subtree not dominated by A.
while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
B = IDom; // Walk up the tree
return B == A;
}
/// Wipe this tree's state without releasing any resources.
///
/// This is essentially a post-move helper only. It leaves the object in an
/// assignable and destroyable state, but otherwise invalid.
void wipe() {
DomTreeNodes.clear();
RootNode = nullptr;
Parent = nullptr;
}
};
template <typename T>
using DomTreeBase = DominatorTreeBase<T, false>;
template <typename T>
using PostDomTreeBase = DominatorTreeBase<T, true>;
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template <typename NodeT, bool IsPostDom>
bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
const NodeT *B) const {
if (A == B)
return true;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
template <typename NodeT, bool IsPostDom>
bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
const NodeT *A, const NodeT *B) const {
if (A == B)
return false;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
} // end namespace llvm
#endif // LLVM_SUPPORT_GENERICDOMTREE_H
|