reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions (and a class) useful for working with scaled
// numbers -- in particular, pairs of integers where one represents digits and
// another represents a scale.  The functions are helpers and live in the
// namespace ScaledNumbers.  The class ScaledNumber is useful for modelling
// certain cost metrics that need simple, integer-like semantics that are easy
// to reason about.
//
// These might remind you of soft-floats.  If you want one of those, you're in
// the wrong place.  Look at include/llvm/ADT/APFloat.h instead.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
#define LLVM_SUPPORT_SCALEDNUMBER_H

#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>

namespace llvm {
namespace ScaledNumbers {

/// Maximum scale; same as APFloat for easy debug printing.
const int32_t MaxScale = 16383;

/// Maximum scale; same as APFloat for easy debug printing.
const int32_t MinScale = -16382;

/// Get the width of a number.
template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }

/// Conditionally round up a scaled number.
///
/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
/// Always returns \c Scale unless there's an overflow, in which case it
/// returns \c 1+Scale.
///
/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
                                              bool ShouldRound) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  if (ShouldRound)
    if (!++Digits)
      // Overflow.
      return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
  return std::make_pair(Digits, Scale);
}

/// Convenience helper for 32-bit rounding.
inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
                                                 bool ShouldRound) {
  return getRounded(Digits, Scale, ShouldRound);
}

/// Convenience helper for 64-bit rounding.
inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
                                                 bool ShouldRound) {
  return getRounded(Digits, Scale, ShouldRound);
}

/// Adjust a 64-bit scaled number down to the appropriate width.
///
/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
                                               int16_t Scale = 0) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  const int Width = getWidth<DigitsT>();
  if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
    return std::make_pair(Digits, Scale);

  // Shift right and round.
  int Shift = 64 - Width - countLeadingZeros(Digits);
  return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
                             Digits & (UINT64_C(1) << (Shift - 1)));
}

/// Convenience helper for adjusting to 32 bits.
inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
                                                  int16_t Scale = 0) {
  return getAdjusted<uint32_t>(Digits, Scale);
}

/// Convenience helper for adjusting to 64 bits.
inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
                                                  int16_t Scale = 0) {
  return getAdjusted<uint64_t>(Digits, Scale);
}

/// Multiply two 64-bit integers to create a 64-bit scaled number.
///
/// Implemented with four 64-bit integer multiplies.
std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);

/// Multiply two 32-bit integers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer multiply.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
    return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);

  return multiply64(LHS, RHS);
}

/// Convenience helper for 32-bit product.
inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
  return getProduct(LHS, RHS);
}

/// Convenience helper for 64-bit product.
inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
  return getProduct(LHS, RHS);
}

/// Divide two 64-bit integers to create a 64-bit scaled number.
///
/// Implemented with long division.
///
/// \pre \c Dividend and \c Divisor are non-zero.
std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);

/// Divide two 32-bit integers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer divide/remainder pair.
///
/// \pre \c Dividend and \c Divisor are non-zero.
std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);

/// Divide two 32-bit numbers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer divide/remainder pair.
///
/// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
template <class DigitsT>
std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
  static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
                "expected 32-bit or 64-bit digits");

  // Check for zero.
  if (!Dividend)
    return std::make_pair(0, 0);
  if (!Divisor)
    return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);

  if (getWidth<DigitsT>() == 64)
    return divide64(Dividend, Divisor);
  return divide32(Dividend, Divisor);
}

/// Convenience helper for 32-bit quotient.
inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
                                                  uint32_t Divisor) {
  return getQuotient(Dividend, Divisor);
}

/// Convenience helper for 64-bit quotient.
inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
                                                  uint64_t Divisor) {
  return getQuotient(Dividend, Divisor);
}

/// Implementation of getLg() and friends.
///
/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
/// this was rounded up (1), down (-1), or exact (0).
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT>
inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  if (!Digits)
    return std::make_pair(INT32_MIN, 0);

  // Get the floor of the lg of Digits.
  int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;

  // Get the actual floor.
  int32_t Floor = Scale + LocalFloor;
  if (Digits == UINT64_C(1) << LocalFloor)
    return std::make_pair(Floor, 0);

  // Round based on the next digit.
  assert(LocalFloor >= 1);
  bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
  return std::make_pair(Floor + Round, Round ? 1 : -1);
}

/// Get the lg (rounded) of a scaled number.
///
/// Get the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
  return getLgImpl(Digits, Scale).first;
}

/// Get the lg floor of a scaled number.
///
/// Get the floor of the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
  auto Lg = getLgImpl(Digits, Scale);
  return Lg.first - (Lg.second > 0);
}

/// Get the lg ceiling of a scaled number.
///
/// Get the ceiling of the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
  auto Lg = getLgImpl(Digits, Scale);
  return Lg.first + (Lg.second < 0);
}

/// Implementation for comparing scaled numbers.
///
/// Compare two 64-bit numbers with different scales.  Given that the scale of
/// \c L is higher than that of \c R by \c ScaleDiff, compare them.  Return -1,
/// 1, and 0 for less than, greater than, and equal, respectively.
///
/// \pre 0 <= ScaleDiff < 64.
int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);

/// Compare two scaled numbers.
///
/// Compare two scaled numbers.  Returns 0 for equal, -1 for less than, and 1
/// for greater than.
template <class DigitsT>
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  // Check for zero.
  if (!LDigits)
    return RDigits ? -1 : 0;
  if (!RDigits)
    return 1;

  // Check for the scale.  Use getLgFloor to be sure that the scale difference
  // is always lower than 64.
  int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
  if (lgL != lgR)
    return lgL < lgR ? -1 : 1;

  // Compare digits.
  if (LScale < RScale)
    return compareImpl(LDigits, RDigits, RScale - LScale);

  return -compareImpl(RDigits, LDigits, LScale - RScale);
}

/// Match scales of two numbers.
///
/// Given two scaled numbers, match up their scales.  Change the digits and
/// scales in place.  Shift the digits as necessary to form equivalent numbers,
/// losing precision only when necessary.
///
/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
/// \c LScale (\c RScale) is unspecified.
///
/// As a convenience, returns the matching scale.  If the output value of one
/// number is zero, returns the scale of the other.  If both are zero, which
/// scale is returned is unspecified.
template <class DigitsT>
int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
                    int16_t &RScale) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  if (LScale < RScale)
    // Swap arguments.
    return matchScales(RDigits, RScale, LDigits, LScale);
  if (!LDigits)
    return RScale;
  if (!RDigits || LScale == RScale)
    return LScale;

  // Now LScale > RScale.  Get the difference.
  int32_t ScaleDiff = int32_t(LScale) - RScale;
  if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
    // Don't bother shifting.  RDigits will get zero-ed out anyway.
    RDigits = 0;
    return LScale;
  }

  // Shift LDigits left as much as possible, then shift RDigits right.
  int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
  assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");

  int32_t ShiftR = ScaleDiff - ShiftL;
  if (ShiftR >= getWidth<DigitsT>()) {
    // Don't bother shifting.  RDigits will get zero-ed out anyway.
    RDigits = 0;
    return LScale;
  }

  LDigits <<= ShiftL;
  RDigits >>= ShiftR;

  LScale -= ShiftL;
  RScale += ShiftR;
  assert(LScale == RScale && "scales should match");
  return LScale;
}

/// Get the sum of two scaled numbers.
///
/// Get the sum of two scaled numbers with as much precision as possible.
///
/// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
template <class DigitsT>
std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
                                   DigitsT RDigits, int16_t RScale) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  // Check inputs up front.  This is only relevant if addition overflows, but
  // testing here should catch more bugs.
  assert(LScale < INT16_MAX && "scale too large");
  assert(RScale < INT16_MAX && "scale too large");

  // Normalize digits to match scales.
  int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);

  // Compute sum.
  DigitsT Sum = LDigits + RDigits;
  if (Sum >= RDigits)
    return std::make_pair(Sum, Scale);

  // Adjust sum after arithmetic overflow.
  DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
  return std::make_pair(HighBit | Sum >> 1, Scale + 1);
}

/// Convenience helper for 32-bit sum.
inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
                                             uint32_t RDigits, int16_t RScale) {
  return getSum(LDigits, LScale, RDigits, RScale);
}

/// Convenience helper for 64-bit sum.
inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
                                             uint64_t RDigits, int16_t RScale) {
  return getSum(LDigits, LScale, RDigits, RScale);
}

/// Get the difference of two scaled numbers.
///
/// Get LHS minus RHS with as much precision as possible.
///
/// Returns \c (0, 0) if the RHS is larger than the LHS.
template <class DigitsT>
std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
                                          DigitsT RDigits, int16_t RScale) {
  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");

  // Normalize digits to match scales.
  const DigitsT SavedRDigits = RDigits;
  const int16_t SavedRScale = RScale;
  matchScales(LDigits, LScale, RDigits, RScale);

  // Compute difference.
  if (LDigits <= RDigits)
    return std::make_pair(0, 0);
  if (RDigits || !SavedRDigits)
    return std::make_pair(LDigits - RDigits, LScale);

  // Check if RDigits just barely lost its last bit.  E.g., for 32-bit:
  //
  //   1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
  const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
  if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
    return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);

  return std::make_pair(LDigits, LScale);
}

/// Convenience helper for 32-bit difference.
inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
                                                    int16_t LScale,
                                                    uint32_t RDigits,
                                                    int16_t RScale) {
  return getDifference(LDigits, LScale, RDigits, RScale);
}

/// Convenience helper for 64-bit difference.
inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
                                                    int16_t LScale,
                                                    uint64_t RDigits,
                                                    int16_t RScale) {
  return getDifference(LDigits, LScale, RDigits, RScale);
}

} // end namespace ScaledNumbers
} // end namespace llvm

namespace llvm {

class raw_ostream;
class ScaledNumberBase {
public:
  static const int DefaultPrecision = 10;

  static void dump(uint64_t D, int16_t E, int Width);
  static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
                            unsigned Precision);
  static std::string toString(uint64_t D, int16_t E, int Width,
                              unsigned Precision);
  static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
  static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
  static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }

  static std::pair<uint64_t, bool> splitSigned(int64_t N) {
    if (N >= 0)
      return std::make_pair(N, false);
    uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
    return std::make_pair(Unsigned, true);
  }
  static int64_t joinSigned(uint64_t U, bool IsNeg) {
    if (U > uint64_t(INT64_MAX))
      return IsNeg ? INT64_MIN : INT64_MAX;
    return IsNeg ? -int64_t(U) : int64_t(U);
  }
};

/// Simple representation of a scaled number.
///
/// ScaledNumber is a number represented by digits and a scale.  It uses simple
/// saturation arithmetic and every operation is well-defined for every value.
/// It's somewhat similar in behaviour to a soft-float, but is *not* a
/// replacement for one.  If you're doing numerics, look at \a APFloat instead.
/// Nevertheless, we've found these semantics useful for modelling certain cost
/// metrics.
///
/// The number is split into a signed scale and unsigned digits.  The number
/// represented is \c getDigits()*2^getScale().  In this way, the digits are
/// much like the mantissa in the x87 long double, but there is no canonical
/// form so the same number can be represented by many bit representations.
///
/// ScaledNumber is templated on the underlying integer type for digits, which
/// is expected to be unsigned.
///
/// Unlike APFloat, ScaledNumber does not model architecture floating point
/// behaviour -- while this might make it a little faster and easier to reason
/// about, it certainly makes it more dangerous for general numerics.
///
/// ScaledNumber is totally ordered.  However, there is no canonical form, so
/// there are multiple representations of most scalars.  E.g.:
///
///     ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
///     ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
///     ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
///
/// ScaledNumber implements most arithmetic operations.  Precision is kept
/// where possible.  Uses simple saturation arithmetic, so that operations
/// saturate to 0.0 or getLargest() rather than under or overflowing.  It has
/// some extra arithmetic for unit inversion.  0.0/0.0 is defined to be 0.0.
/// Any other division by 0.0 is defined to be getLargest().
///
/// As a convenience for modifying the exponent, left and right shifting are
/// both implemented, and both interpret negative shifts as positive shifts in
/// the opposite direction.
///
/// Scales are limited to the range accepted by x87 long double.  This makes
/// it trivial to add functionality to convert to APFloat (this is already
/// relied on for the implementation of printing).
///
/// Possible (and conflicting) future directions:
///
///  1. Turn this into a wrapper around \a APFloat.
///  2. Share the algorithm implementations with \a APFloat.
///  3. Allow \a ScaledNumber to represent a signed number.
template <class DigitsT> class ScaledNumber : ScaledNumberBase {
public:
  static_assert(!std::numeric_limits<DigitsT>::is_signed,
                "only unsigned floats supported");

  typedef DigitsT DigitsType;

private:
  typedef std::numeric_limits<DigitsType> DigitsLimits;

  static const int Width = sizeof(DigitsType) * 8;
  static_assert(Width <= 64, "invalid integer width for digits");

private:
  DigitsType Digits = 0;
  int16_t Scale = 0;

public:
  ScaledNumber() = default;

  constexpr ScaledNumber(DigitsType Digits, int16_t Scale)
      : Digits(Digits), Scale(Scale) {}

private:
  ScaledNumber(const std::pair<DigitsT, int16_t> &X)
      : Digits(X.first), Scale(X.second) {}

public:
  static ScaledNumber getZero() { return ScaledNumber(0, 0); }
  static ScaledNumber getOne() { return ScaledNumber(1, 0); }
  static ScaledNumber getLargest() {
    return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
  }
  static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
  static ScaledNumber getInverse(uint64_t N) {
    return get(N).invert();
  }
  static ScaledNumber getFraction(DigitsType N, DigitsType D) {
    return getQuotient(N, D);
  }

  int16_t getScale() const { return Scale; }
  DigitsType getDigits() const { return Digits; }

  /// Convert to the given integer type.
  ///
  /// Convert to \c IntT using simple saturating arithmetic, truncating if
  /// necessary.
  template <class IntT> IntT toInt() const;

  bool isZero() const { return !Digits; }
  bool isLargest() const { return *this == getLargest(); }
  bool isOne() const {
    if (Scale > 0 || Scale <= -Width)
      return false;
    return Digits == DigitsType(1) << -Scale;
  }

  /// The log base 2, rounded.
  ///
  /// Get the lg of the scalar.  lg 0 is defined to be INT32_MIN.
  int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }

  /// The log base 2, rounded towards INT32_MIN.
  ///
  /// Get the lg floor.  lg 0 is defined to be INT32_MIN.
  int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }

  /// The log base 2, rounded towards INT32_MAX.
  ///
  /// Get the lg ceiling.  lg 0 is defined to be INT32_MIN.
  int32_t lgCeiling() const {
    return ScaledNumbers::getLgCeiling(Digits, Scale);
  }

  bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
  bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
  bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
  bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
  bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
  bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }

  bool operator!() const { return isZero(); }

  /// Convert to a decimal representation in a string.
  ///
  /// Convert to a string.  Uses scientific notation for very large/small
  /// numbers.  Scientific notation is used roughly for numbers outside of the
  /// range 2^-64 through 2^64.
  ///
  /// \c Precision indicates the number of decimal digits of precision to use;
  /// 0 requests the maximum available.
  ///
  /// As a special case to make debugging easier, if the number is small enough
  /// to convert without scientific notation and has more than \c Precision
  /// digits before the decimal place, it's printed accurately to the first
  /// digit past zero.  E.g., assuming 10 digits of precision:
  ///
  ///     98765432198.7654... => 98765432198.8
  ///      8765432198.7654... =>  8765432198.8
  ///       765432198.7654... =>   765432198.8
  ///        65432198.7654... =>    65432198.77
  ///         5432198.7654... =>     5432198.765
  std::string toString(unsigned Precision = DefaultPrecision) {
    return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
  }

  /// Print a decimal representation.
  ///
  /// Print a string.  See toString for documentation.
  raw_ostream &print(raw_ostream &OS,
                     unsigned Precision = DefaultPrecision) const {
    return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
  }
  void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }

  ScaledNumber &operator+=(const ScaledNumber &X) {
    std::tie(Digits, Scale) =
        ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
    // Check for exponent past MaxScale.
    if (Scale > ScaledNumbers::MaxScale)
      *this = getLargest();
    return *this;
  }
  ScaledNumber &operator-=(const ScaledNumber &X) {
    std::tie(Digits, Scale) =
        ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
    return *this;
  }
  ScaledNumber &operator*=(const ScaledNumber &X);
  ScaledNumber &operator/=(const ScaledNumber &X);
  ScaledNumber &operator<<=(int16_t Shift) {
    shiftLeft(Shift);
    return *this;
  }
  ScaledNumber &operator>>=(int16_t Shift) {
    shiftRight(Shift);
    return *this;
  }

private:
  void shiftLeft(int32_t Shift);
  void shiftRight(int32_t Shift);

  /// Adjust two floats to have matching exponents.
  ///
  /// Adjust \c this and \c X to have matching exponents.  Returns the new \c X
  /// by value.  Does nothing if \a isZero() for either.
  ///
  /// The value that compares smaller will lose precision, and possibly become
  /// \a isZero().
  ScaledNumber matchScales(ScaledNumber X) {
    ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
    return X;
  }

public:
  /// Scale a large number accurately.
  ///
  /// Scale N (multiply it by this).  Uses full precision multiplication, even
  /// if Width is smaller than 64, so information is not lost.
  uint64_t scale(uint64_t N) const;
  uint64_t scaleByInverse(uint64_t N) const {
    // TODO: implement directly, rather than relying on inverse.  Inverse is
    // expensive.
    return inverse().scale(N);
  }
  int64_t scale(int64_t N) const {
    std::pair<uint64_t, bool> Unsigned = splitSigned(N);
    return joinSigned(scale(Unsigned.first), Unsigned.second);
  }
  int64_t scaleByInverse(int64_t N) const {
    std::pair<uint64_t, bool> Unsigned = splitSigned(N);
    return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
  }

  int compare(const ScaledNumber &X) const {
    return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
  }
  int compareTo(uint64_t N) const {
    return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0);
  }
  int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }

  ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
  ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }

private:
  static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
    return ScaledNumbers::getProduct(LHS, RHS);
  }
  static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
    return ScaledNumbers::getQuotient(Dividend, Divisor);
  }

  static int countLeadingZerosWidth(DigitsType Digits) {
    if (Width == 64)
      return countLeadingZeros64(Digits);
    if (Width == 32)
      return countLeadingZeros32(Digits);
    return countLeadingZeros32(Digits) + Width - 32;
  }

  /// Adjust a number to width, rounding up if necessary.
  ///
  /// Should only be called for \c Shift close to zero.
  ///
  /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
  static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
    assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
    assert(Shift <= ScaledNumbers::MaxScale - 64 &&
           "Shift should be close to 0");
    auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
    return Adjusted;
  }

  static ScaledNumber getRounded(ScaledNumber P, bool Round) {
    // Saturate.
    if (P.isLargest())
      return P;

    return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
  }
};

#define SCALED_NUMBER_BOP(op, base)                                            \
  template <class DigitsT>                                                     \
  ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L,            \
                                    const ScaledNumber<DigitsT> &R) {          \
    return ScaledNumber<DigitsT>(L) base R;                                    \
  }
SCALED_NUMBER_BOP(+, += )
SCALED_NUMBER_BOP(-, -= )
SCALED_NUMBER_BOP(*, *= )
SCALED_NUMBER_BOP(/, /= )
#undef SCALED_NUMBER_BOP

template <class DigitsT>
ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L,
                                 int16_t Shift) {
  return ScaledNumber<DigitsT>(L) <<= Shift;
}

template <class DigitsT>
ScaledNumber<DigitsT> operator>>(const ScaledNumber<DigitsT> &L,
                                 int16_t Shift) {
  return ScaledNumber<DigitsT>(L) >>= Shift;
}

template <class DigitsT>
raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
  return X.print(OS, 10);
}

#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2)                              \
  template <class DigitsT>                                                     \
  bool operator op(const ScaledNumber<DigitsT> &L, T1 R) {                     \
    return L.compareTo(T2(R)) op 0;                                            \
  }                                                                            \
  template <class DigitsT>                                                     \
  bool operator op(T1 L, const ScaledNumber<DigitsT> &R) {                     \
    return 0 op R.compareTo(T2(L));                                            \
  }
#define SCALED_NUMBER_COMPARE_TO(op)                                           \
  SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t)                        \
  SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t)                        \
  SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t)                          \
  SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
SCALED_NUMBER_COMPARE_TO(< )
SCALED_NUMBER_COMPARE_TO(> )
SCALED_NUMBER_COMPARE_TO(== )
SCALED_NUMBER_COMPARE_TO(!= )
SCALED_NUMBER_COMPARE_TO(<= )
SCALED_NUMBER_COMPARE_TO(>= )
#undef SCALED_NUMBER_COMPARE_TO
#undef SCALED_NUMBER_COMPARE_TO_TYPE

template <class DigitsT>
uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
  if (Width == 64 || N <= DigitsLimits::max())
    return (get(N) * *this).template toInt<uint64_t>();

  // Defer to the 64-bit version.
  return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
}

template <class DigitsT>
template <class IntT>
IntT ScaledNumber<DigitsT>::toInt() const {
  typedef std::numeric_limits<IntT> Limits;
  if (*this < 1)
    return 0;
  if (*this >= Limits::max())
    return Limits::max();

  IntT N = Digits;
  if (Scale > 0) {
    assert(size_t(Scale) < sizeof(IntT) * 8);
    return N << Scale;
  }
  if (Scale < 0) {
    assert(size_t(-Scale) < sizeof(IntT) * 8);
    return N >> -Scale;
  }
  return N;
}

template <class DigitsT>
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
operator*=(const ScaledNumber &X) {
  if (isZero())
    return *this;
  if (X.isZero())
    return *this = X;

  // Save the exponents.
  int32_t Scales = int32_t(Scale) + int32_t(X.Scale);

  // Get the raw product.
  *this = getProduct(Digits, X.Digits);

  // Combine with exponents.
  return *this <<= Scales;
}
template <class DigitsT>
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
operator/=(const ScaledNumber &X) {
  if (isZero())
    return *this;
  if (X.isZero())
    return *this = getLargest();

  // Save the exponents.
  int32_t Scales = int32_t(Scale) - int32_t(X.Scale);

  // Get the raw quotient.
  *this = getQuotient(Digits, X.Digits);

  // Combine with exponents.
  return *this <<= Scales;
}
template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
  if (!Shift || isZero())
    return;
  assert(Shift != INT32_MIN);
  if (Shift < 0) {
    shiftRight(-Shift);
    return;
  }

  // Shift as much as we can in the exponent.
  int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
  Scale += ScaleShift;
  if (ScaleShift == Shift)
    return;

  // Check this late, since it's rare.
  if (isLargest())
    return;

  // Shift the digits themselves.
  Shift -= ScaleShift;
  if (Shift > countLeadingZerosWidth(Digits)) {
    // Saturate.
    *this = getLargest();
    return;
  }

  Digits <<= Shift;
}

template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
  if (!Shift || isZero())
    return;
  assert(Shift != INT32_MIN);
  if (Shift < 0) {
    shiftLeft(-Shift);
    return;
  }

  // Shift as much as we can in the exponent.
  int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
  Scale -= ScaleShift;
  if (ScaleShift == Shift)
    return;

  // Shift the digits themselves.
  Shift -= ScaleShift;
  if (Shift >= Width) {
    // Saturate.
    *this = getZero();
    return;
  }

  Digits >>= Shift;
}


} // end namespace llvm

#endif // LLVM_SUPPORT_SCALEDNUMBER_H