reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
//===- llvm/Transforms/Vectorize/LoopVectorizationLegality.h ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file defines the LoopVectorizationLegality class. Original code
/// in Loop Vectorizer has been moved out to its own file for modularity
/// and reusability.
///
/// Currently, it works for innermost loop vectorization. Extending this to
/// outer loop vectorization is a TODO item.
///
/// Also provides:
/// 1) LoopVectorizeHints class which keeps a number of loop annotations
/// locally for easy look up. It has the ability to write them back as
/// loop metadata, upon request.
/// 2) LoopVectorizationRequirements class for lazy bail out for the purpose
/// of reporting useful failure to vectorize message.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H

#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

namespace llvm {

/// Utility class for getting and setting loop vectorizer hints in the form
/// of loop metadata.
/// This class keeps a number of loop annotations locally (as member variables)
/// and can, upon request, write them back as metadata on the loop. It will
/// initially scan the loop for existing metadata, and will update the local
/// values based on information in the loop.
/// We cannot write all values to metadata, as the mere presence of some info,
/// for example 'force', means a decision has been made. So, we need to be
/// careful NOT to add them if the user hasn't specifically asked so.
class LoopVectorizeHints {
  enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED,
                  HK_PREDICATE };

  /// Hint - associates name and validation with the hint value.
  struct Hint {
    const char *Name;
    unsigned Value; // This may have to change for non-numeric values.
    HintKind Kind;

    Hint(const char *Name, unsigned Value, HintKind Kind)
        : Name(Name), Value(Value), Kind(Kind) {}

    bool validate(unsigned Val);
  };

  /// Vectorization width.
  Hint Width;

  /// Vectorization interleave factor.
  Hint Interleave;

  /// Vectorization forced
  Hint Force;

  /// Already Vectorized
  Hint IsVectorized;

  /// Vector Predicate
  Hint Predicate;

  /// Return the loop metadata prefix.
  static StringRef Prefix() { return "llvm.loop."; }

  /// True if there is any unsafe math in the loop.
  bool PotentiallyUnsafe = false;

public:
  enum ForceKind {
    FK_Undefined = -1, ///< Not selected.
    FK_Disabled = 0,   ///< Forcing disabled.
    FK_Enabled = 1,    ///< Forcing enabled.
  };

  LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced,
                     OptimizationRemarkEmitter &ORE);

  /// Mark the loop L as already vectorized by setting the width to 1.
  void setAlreadyVectorized();

  bool allowVectorization(Function *F, Loop *L,
                          bool VectorizeOnlyWhenForced) const;

  /// Dumps all the hint information.
  void emitRemarkWithHints() const;

  unsigned getWidth() const { return Width.Value; }
  unsigned getInterleave() const { return Interleave.Value; }
  unsigned getIsVectorized() const { return IsVectorized.Value; }
  unsigned getPredicate() const { return Predicate.Value; }
  enum ForceKind getForce() const {
    if ((ForceKind)Force.Value == FK_Undefined &&
        hasDisableAllTransformsHint(TheLoop))
      return FK_Disabled;
    return (ForceKind)Force.Value;
  }

  /// If hints are provided that force vectorization, use the AlwaysPrint
  /// pass name to force the frontend to print the diagnostic.
  const char *vectorizeAnalysisPassName() const;

  bool allowReordering() const {
    // When enabling loop hints are provided we allow the vectorizer to change
    // the order of operations that is given by the scalar loop. This is not
    // enabled by default because can be unsafe or inefficient. For example,
    // reordering floating-point operations will change the way round-off
    // error accumulates in the loop.
    return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
  }

  bool isPotentiallyUnsafe() const {
    // Avoid FP vectorization if the target is unsure about proper support.
    // This may be related to the SIMD unit in the target not handling
    // IEEE 754 FP ops properly, or bad single-to-double promotions.
    // Otherwise, a sequence of vectorized loops, even without reduction,
    // could lead to different end results on the destination vectors.
    return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
  }

  void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }

private:
  /// Find hints specified in the loop metadata and update local values.
  void getHintsFromMetadata();

  /// Checks string hint with one operand and set value if valid.
  void setHint(StringRef Name, Metadata *Arg);

  /// The loop these hints belong to.
  const Loop *TheLoop;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter &ORE;
};

/// This holds vectorization requirements that must be verified late in
/// the process. The requirements are set by legalize and costmodel. Once
/// vectorization has been determined to be possible and profitable the
/// requirements can be verified by looking for metadata or compiler options.
/// For example, some loops require FP commutativity which is only allowed if
/// vectorization is explicitly specified or if the fast-math compiler option
/// has been provided.
/// Late evaluation of these requirements allows helpful diagnostics to be
/// composed that tells the user what need to be done to vectorize the loop. For
/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
/// evaluation should be used only when diagnostics can generated that can be
/// followed by a non-expert user.
class LoopVectorizationRequirements {
public:
  LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}

  void addUnsafeAlgebraInst(Instruction *I) {
    // First unsafe algebra instruction.
    if (!UnsafeAlgebraInst)
      UnsafeAlgebraInst = I;
  }

  void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }

  bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints);

private:
  unsigned NumRuntimePointerChecks = 0;
  Instruction *UnsafeAlgebraInst = nullptr;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter &ORE;
};

/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
/// legality. This class has two main kinds of checks:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
///   will change the order of memory accesses in a way that will change the
///   correctness of the program.
/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
/// checks for a number of different conditions, such as the availability of a
/// single induction variable, that all types are supported and vectorize-able,
/// etc. This code reflects the capabilities of InnerLoopVectorizer.
/// This class is also used by InnerLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
  LoopVectorizationLegality(
      Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
      TargetTransformInfo *TTI, TargetLibraryInfo *TLI, AliasAnalysis *AA,
      Function *F, std::function<const LoopAccessInfo &(Loop &)> *GetLAA,
      LoopInfo *LI, OptimizationRemarkEmitter *ORE,
      LoopVectorizationRequirements *R, LoopVectorizeHints *H, DemandedBits *DB,
      AssumptionCache *AC)
      : TheLoop(L), LI(LI), PSE(PSE), TTI(TTI), TLI(TLI), DT(DT),
        GetLAA(GetLAA), ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC) {}

  /// ReductionList contains the reduction descriptors for all
  /// of the reductions that were found in the loop.
  using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;

  /// InductionList saves induction variables and maps them to the
  /// induction descriptor.
  using InductionList = MapVector<PHINode *, InductionDescriptor>;

  /// RecurrenceSet contains the phi nodes that are recurrences other than
  /// inductions and reductions.
  using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;

  /// Returns true if it is legal to vectorize this loop.
  /// This does not mean that it is profitable to vectorize this
  /// loop, only that it is legal to do so.
  /// Temporarily taking UseVPlanNativePath parameter. If true, take
  /// the new code path being implemented for outer loop vectorization
  /// (should be functional for inner loop vectorization) based on VPlan.
  /// If false, good old LV code.
  bool canVectorize(bool UseVPlanNativePath);

  /// Return true if we can vectorize this loop while folding its tail by
  /// masking, and mark all respective loads/stores for masking.
  bool prepareToFoldTailByMasking();

  /// Returns the primary induction variable.
  PHINode *getPrimaryInduction() { return PrimaryInduction; }

  /// Returns the reduction variables found in the loop.
  ReductionList *getReductionVars() { return &Reductions; }

  /// Returns the induction variables found in the loop.
  InductionList *getInductionVars() { return &Inductions; }

  /// Return the first-order recurrences found in the loop.
  RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }

  /// Return the set of instructions to sink to handle first-order recurrences.
  DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }

  /// Returns the widest induction type.
  Type *getWidestInductionType() { return WidestIndTy; }

  /// Returns True if V is a Phi node of an induction variable in this loop.
  bool isInductionPhi(const Value *V);

  /// Returns True if V is a cast that is part of an induction def-use chain,
  /// and had been proven to be redundant under a runtime guard (in other
  /// words, the cast has the same SCEV expression as the induction phi).
  bool isCastedInductionVariable(const Value *V);

  /// Returns True if V can be considered as an induction variable in this
  /// loop. V can be the induction phi, or some redundant cast in the def-use
  /// chain of the inducion phi.
  bool isInductionVariable(const Value *V);

  /// Returns True if PN is a reduction variable in this loop.
  bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }

  /// Returns True if Phi is a first-order recurrence in this loop.
  bool isFirstOrderRecurrence(const PHINode *Phi);

  /// Return true if the block BB needs to be predicated in order for the loop
  /// to be vectorized.
  bool blockNeedsPredication(BasicBlock *BB);

  /// Check if this pointer is consecutive when vectorizing. This happens
  /// when the last index of the GEP is the induction variable, or that the
  /// pointer itself is an induction variable.
  /// This check allows us to vectorize A[idx] into a wide load/store.
  /// Returns:
  /// 0 - Stride is unknown or non-consecutive.
  /// 1 - Address is consecutive.
  /// -1 - Address is consecutive, and decreasing.
  /// NOTE: This method must only be used before modifying the original scalar
  /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
  int isConsecutivePtr(Value *Ptr);

  /// Returns true if the value V is uniform within the loop.
  bool isUniform(Value *V);

  /// Returns the information that we collected about runtime memory check.
  const RuntimePointerChecking *getRuntimePointerChecking() const {
    return LAI->getRuntimePointerChecking();
  }

  const LoopAccessInfo *getLAI() const { return LAI; }

  unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }

  uint64_t getMaxSafeRegisterWidth() const {
    return LAI->getDepChecker().getMaxSafeRegisterWidth();
  }

  bool hasStride(Value *V) { return LAI->hasStride(V); }

  /// Returns true if vector representation of the instruction \p I
  /// requires mask.
  bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }

  unsigned getNumStores() const { return LAI->getNumStores(); }
  unsigned getNumLoads() const { return LAI->getNumLoads(); }

  // Returns true if the NoNaN attribute is set on the function.
  bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }

private:
  /// Return true if the pre-header, exiting and latch blocks of \p Lp and all
  /// its nested loops are considered legal for vectorization. These legal
  /// checks are common for inner and outer loop vectorization.
  /// Temporarily taking UseVPlanNativePath parameter. If true, take
  /// the new code path being implemented for outer loop vectorization
  /// (should be functional for inner loop vectorization) based on VPlan.
  /// If false, good old LV code.
  bool canVectorizeLoopNestCFG(Loop *Lp, bool UseVPlanNativePath);

  /// Set up outer loop inductions by checking Phis in outer loop header for
  /// supported inductions (int inductions). Return false if any of these Phis
  /// is not a supported induction or if we fail to find an induction.
  bool setupOuterLoopInductions();

  /// Return true if the pre-header, exiting and latch blocks of \p Lp
  /// (non-recursive) are considered legal for vectorization.
  /// Temporarily taking UseVPlanNativePath parameter. If true, take
  /// the new code path being implemented for outer loop vectorization
  /// (should be functional for inner loop vectorization) based on VPlan.
  /// If false, good old LV code.
  bool canVectorizeLoopCFG(Loop *Lp, bool UseVPlanNativePath);

  /// Check if a single basic block loop is vectorizable.
  /// At this point we know that this is a loop with a constant trip count
  /// and we only need to check individual instructions.
  bool canVectorizeInstrs();

  /// When we vectorize loops we may change the order in which
  /// we read and write from memory. This method checks if it is
  /// legal to vectorize the code, considering only memory constrains.
  /// Returns true if the loop is vectorizable
  bool canVectorizeMemory();

  /// Return true if we can vectorize this loop using the IF-conversion
  /// transformation.
  bool canVectorizeWithIfConvert();

  /// Return true if we can vectorize this outer loop. The method performs
  /// specific checks for outer loop vectorization.
  bool canVectorizeOuterLoop();

  /// Return true if all of the instructions in the block can be speculatively
  /// executed, and record the loads/stores that require masking. If's that
  /// guard loads can be ignored under "assume safety" unless \p PreserveGuards
  /// is true. This can happen when we introduces guards for which the original
  /// "unguarded-loads are safe" assumption does not hold. For example, the
  /// vectorizer's fold-tail transformation changes the loop to execute beyond
  /// its original trip-count, under a proper guard, which should be preserved.
  /// \p SafePtrs is a list of addresses that are known to be legal and we know
  /// that we can read from them without segfault.
  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
                            bool PreserveGuards = false);

  /// Updates the vectorization state by adding \p Phi to the inductions list.
  /// This can set \p Phi as the main induction of the loop if \p Phi is a
  /// better choice for the main induction than the existing one.
  void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
                       SmallPtrSetImpl<Value *> &AllowedExit);

  /// If an access has a symbolic strides, this maps the pointer value to
  /// the stride symbol.
  const ValueToValueMap *getSymbolicStrides() {
    // FIXME: Currently, the set of symbolic strides is sometimes queried before
    // it's collected.  This happens from canVectorizeWithIfConvert, when the
    // pointer is checked to reference consecutive elements suitable for a
    // masked access.
    return LAI ? &LAI->getSymbolicStrides() : nullptr;
  }

  /// The loop that we evaluate.
  Loop *TheLoop;

  /// Loop Info analysis.
  LoopInfo *LI;

  /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
  /// Applies dynamic knowledge to simplify SCEV expressions in the context
  /// of existing SCEV assumptions. The analysis will also add a minimal set
  /// of new predicates if this is required to enable vectorization and
  /// unrolling.
  PredicatedScalarEvolution &PSE;

  /// Target Transform Info.
  TargetTransformInfo *TTI;

  /// Target Library Info.
  TargetLibraryInfo *TLI;

  /// Dominator Tree.
  DominatorTree *DT;

  // LoopAccess analysis.
  std::function<const LoopAccessInfo &(Loop &)> *GetLAA;

  // And the loop-accesses info corresponding to this loop.  This pointer is
  // null until canVectorizeMemory sets it up.
  const LoopAccessInfo *LAI = nullptr;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  //  ---  vectorization state --- //

  /// Holds the primary induction variable. This is the counter of the
  /// loop.
  PHINode *PrimaryInduction = nullptr;

  /// Holds the reduction variables.
  ReductionList Reductions;

  /// Holds all of the induction variables that we found in the loop.
  /// Notice that inductions don't need to start at zero and that induction
  /// variables can be pointers.
  InductionList Inductions;

  /// Holds all the casts that participate in the update chain of the induction
  /// variables, and that have been proven to be redundant (possibly under a
  /// runtime guard). These casts can be ignored when creating the vectorized
  /// loop body.
  SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;

  /// Holds the phi nodes that are first-order recurrences.
  RecurrenceSet FirstOrderRecurrences;

  /// Holds instructions that need to sink past other instructions to handle
  /// first-order recurrences.
  DenseMap<Instruction *, Instruction *> SinkAfter;

  /// Holds the widest induction type encountered.
  Type *WidestIndTy = nullptr;

  /// Allowed outside users. This holds the variables that can be accessed from
  /// outside the loop.
  SmallPtrSet<Value *, 4> AllowedExit;

  /// Can we assume the absence of NaNs.
  bool HasFunNoNaNAttr = false;

  /// Vectorization requirements that will go through late-evaluation.
  LoopVectorizationRequirements *Requirements;

  /// Used to emit an analysis of any legality issues.
  LoopVectorizeHints *Hints;

  /// The demanded bits analysis is used to compute the minimum type size in
  /// which a reduction can be computed.
  DemandedBits *DB;

  /// The assumption cache analysis is used to compute the minimum type size in
  /// which a reduction can be computed.
  AssumptionCache *AC;

  /// While vectorizing these instructions we have to generate a
  /// call to the appropriate masked intrinsic
  SmallPtrSet<const Instruction *, 8> MaskedOp;
};

} // namespace llvm

#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H