reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
//=====- CFLSummary.h - Abstract stratified sets implementation. --------=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines various utility types and functions useful to
/// summary-based alias analysis.
///
/// Summary-based analysis, also known as bottom-up analysis, is a style of
/// interprocedrual static analysis that tries to analyze the callees before the
/// callers get analyzed. The key idea of summary-based analysis is to first
/// process each function independently, outline its behavior in a condensed
/// summary, and then instantiate the summary at the callsite when the said
/// function is called elsewhere. This is often in contrast to another style
/// called top-down analysis, in which callers are always analyzed first before
/// the callees.
///
/// In a summary-based analysis, functions must be examined independently and
/// out-of-context. We have no information on the state of the memory, the
/// arguments, the global values, and anything else external to the function. To
/// carry out the analysis conservative assumptions have to be made about those
/// external states. In exchange for the potential loss of precision, the
/// summary we obtain this way is highly reusable, which makes the analysis
/// easier to scale to large programs even if carried out context-sensitively.
///
/// Currently, all CFL-based alias analyses adopt the summary-based approach
/// and therefore heavily rely on this header.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/InstrTypes.h"
#include <bitset>

namespace llvm {
namespace cflaa {

//===----------------------------------------------------------------------===//
// AliasAttr related stuffs
//===----------------------------------------------------------------------===//

/// The number of attributes that AliasAttr should contain. Attributes are
/// described below, and 32 was an arbitrary choice because it fits nicely in 32
/// bits (because we use a bitset for AliasAttr).
static const unsigned NumAliasAttrs = 32;

/// These are attributes that an alias analysis can use to mark certain special
/// properties of a given pointer. Refer to the related functions below to see
/// what kinds of attributes are currently defined.
typedef std::bitset<NumAliasAttrs> AliasAttrs;

/// Attr represent whether the said pointer comes from an unknown source
/// (such as opaque memory or an integer cast).
AliasAttrs getAttrNone();

/// AttrUnknown represent whether the said pointer comes from a source not known
/// to alias analyses (such as opaque memory or an integer cast).
AliasAttrs getAttrUnknown();
bool hasUnknownAttr(AliasAttrs);

/// AttrCaller represent whether the said pointer comes from a source not known
/// to the current function but known to the caller. Values pointed to by the
/// arguments of the current function have this attribute set
AliasAttrs getAttrCaller();
bool hasCallerAttr(AliasAttrs);
bool hasUnknownOrCallerAttr(AliasAttrs);

/// AttrEscaped represent whether the said pointer comes from a known source but
/// escapes to the unknown world (e.g. casted to an integer, or passed as an
/// argument to opaque function). Unlike non-escaped pointers, escaped ones may
/// alias pointers coming from unknown sources.
AliasAttrs getAttrEscaped();
bool hasEscapedAttr(AliasAttrs);

/// AttrGlobal represent whether the said pointer is a global value.
/// AttrArg represent whether the said pointer is an argument, and if so, what
/// index the argument has.
AliasAttrs getGlobalOrArgAttrFromValue(const Value &);
bool isGlobalOrArgAttr(AliasAttrs);

/// Given an AliasAttrs, return a new AliasAttrs that only contains attributes
/// meaningful to the caller. This function is primarily used for
/// interprocedural analysis
/// Currently, externally visible AliasAttrs include AttrUnknown, AttrGlobal,
/// and AttrEscaped
AliasAttrs getExternallyVisibleAttrs(AliasAttrs);

//===----------------------------------------------------------------------===//
// Function summary related stuffs
//===----------------------------------------------------------------------===//

/// The maximum number of arguments we can put into a summary.
static const unsigned MaxSupportedArgsInSummary = 50;

/// We use InterfaceValue to describe parameters/return value, as well as
/// potential memory locations that are pointed to by parameters/return value,
/// of a function.
/// Index is an integer which represents a single parameter or a return value.
/// When the index is 0, it refers to the return value. Non-zero index i refers
/// to the i-th parameter.
/// DerefLevel indicates the number of dereferences one must perform on the
/// parameter/return value to get this InterfaceValue.
struct InterfaceValue {
  unsigned Index;
  unsigned DerefLevel;
};

inline bool operator==(InterfaceValue LHS, InterfaceValue RHS) {
  return LHS.Index == RHS.Index && LHS.DerefLevel == RHS.DerefLevel;
}
inline bool operator!=(InterfaceValue LHS, InterfaceValue RHS) {
  return !(LHS == RHS);
}
inline bool operator<(InterfaceValue LHS, InterfaceValue RHS) {
  return LHS.Index < RHS.Index ||
         (LHS.Index == RHS.Index && LHS.DerefLevel < RHS.DerefLevel);
}
inline bool operator>(InterfaceValue LHS, InterfaceValue RHS) {
  return RHS < LHS;
}
inline bool operator<=(InterfaceValue LHS, InterfaceValue RHS) {
  return !(RHS < LHS);
}
inline bool operator>=(InterfaceValue LHS, InterfaceValue RHS) {
  return !(LHS < RHS);
}

// We use UnknownOffset to represent pointer offsets that cannot be determined
// at compile time. Note that MemoryLocation::UnknownSize cannot be used here
// because we require a signed value.
static const int64_t UnknownOffset = INT64_MAX;

inline int64_t addOffset(int64_t LHS, int64_t RHS) {
  if (LHS == UnknownOffset || RHS == UnknownOffset)
    return UnknownOffset;
  // FIXME: Do we need to guard against integer overflow here?
  return LHS + RHS;
}

/// We use ExternalRelation to describe an externally visible aliasing relations
/// between parameters/return value of a function.
struct ExternalRelation {
  InterfaceValue From, To;
  int64_t Offset;
};

inline bool operator==(ExternalRelation LHS, ExternalRelation RHS) {
  return LHS.From == RHS.From && LHS.To == RHS.To && LHS.Offset == RHS.Offset;
}
inline bool operator!=(ExternalRelation LHS, ExternalRelation RHS) {
  return !(LHS == RHS);
}
inline bool operator<(ExternalRelation LHS, ExternalRelation RHS) {
  if (LHS.From < RHS.From)
    return true;
  if (LHS.From > RHS.From)
    return false;
  if (LHS.To < RHS.To)
    return true;
  if (LHS.To > RHS.To)
    return false;
  return LHS.Offset < RHS.Offset;
}
inline bool operator>(ExternalRelation LHS, ExternalRelation RHS) {
  return RHS < LHS;
}
inline bool operator<=(ExternalRelation LHS, ExternalRelation RHS) {
  return !(RHS < LHS);
}
inline bool operator>=(ExternalRelation LHS, ExternalRelation RHS) {
  return !(LHS < RHS);
}

/// We use ExternalAttribute to describe an externally visible AliasAttrs
/// for parameters/return value.
struct ExternalAttribute {
  InterfaceValue IValue;
  AliasAttrs Attr;
};

/// AliasSummary is just a collection of ExternalRelation and ExternalAttribute
struct AliasSummary {
  // RetParamRelations is a collection of ExternalRelations.
  SmallVector<ExternalRelation, 8> RetParamRelations;

  // RetParamAttributes is a collection of ExternalAttributes.
  SmallVector<ExternalAttribute, 8> RetParamAttributes;
};

/// This is the result of instantiating InterfaceValue at a particular call
struct InstantiatedValue {
  Value *Val;
  unsigned DerefLevel;
};
Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue IValue,
                                                      CallBase &Call);

inline bool operator==(InstantiatedValue LHS, InstantiatedValue RHS) {
  return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
}
inline bool operator!=(InstantiatedValue LHS, InstantiatedValue RHS) {
  return !(LHS == RHS);
}
inline bool operator<(InstantiatedValue LHS, InstantiatedValue RHS) {
  return std::less<Value *>()(LHS.Val, RHS.Val) ||
         (LHS.Val == RHS.Val && LHS.DerefLevel < RHS.DerefLevel);
}
inline bool operator>(InstantiatedValue LHS, InstantiatedValue RHS) {
  return RHS < LHS;
}
inline bool operator<=(InstantiatedValue LHS, InstantiatedValue RHS) {
  return !(RHS < LHS);
}
inline bool operator>=(InstantiatedValue LHS, InstantiatedValue RHS) {
  return !(LHS < RHS);
}

/// This is the result of instantiating ExternalRelation at a particular
/// callsite
struct InstantiatedRelation {
  InstantiatedValue From, To;
  int64_t Offset;
};
Optional<InstantiatedRelation>
instantiateExternalRelation(ExternalRelation ERelation, CallBase &Call);

/// This is the result of instantiating ExternalAttribute at a particular
/// callsite
struct InstantiatedAttr {
  InstantiatedValue IValue;
  AliasAttrs Attr;
};
Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute EAttr,
                                                        CallBase &Call);
}

template <> struct DenseMapInfo<cflaa::InstantiatedValue> {
  static inline cflaa::InstantiatedValue getEmptyKey() {
    return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getEmptyKey(),
                                    DenseMapInfo<unsigned>::getEmptyKey()};
  }
  static inline cflaa::InstantiatedValue getTombstoneKey() {
    return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getTombstoneKey(),
                                    DenseMapInfo<unsigned>::getTombstoneKey()};
  }
  static unsigned getHashValue(const cflaa::InstantiatedValue &IV) {
    return DenseMapInfo<std::pair<Value *, unsigned>>::getHashValue(
        std::make_pair(IV.Val, IV.DerefLevel));
  }
  static bool isEqual(const cflaa::InstantiatedValue &LHS,
                      const cflaa::InstantiatedValue &RHS) {
    return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
  }
};
}

#endif