reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
//===- BranchRelaxation.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>

using namespace llvm;

#define DEBUG_TYPE "branch-relaxation"

STATISTIC(NumSplit, "Number of basic blocks split");
STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");

#define BRANCH_RELAX_NAME "Branch relaxation pass"

namespace {

class BranchRelaxation : public MachineFunctionPass {
  /// BasicBlockInfo - Information about the offset and size of a single
  /// basic block.
  struct BasicBlockInfo {
    /// Offset - Distance from the beginning of the function to the beginning
    /// of this basic block.
    ///
    /// The offset is always aligned as required by the basic block.
    unsigned Offset = 0;

    /// Size - Size of the basic block in bytes.  If the block contains
    /// inline assembly, this is a worst case estimate.
    ///
    /// The size does not include any alignment padding whether from the
    /// beginning of the block, or from an aligned jump table at the end.
    unsigned Size = 0;

    BasicBlockInfo() = default;

    /// Compute the offset immediately following this block. \p MBB is the next
    /// block.
    unsigned postOffset(const MachineBasicBlock &MBB) const {
      const unsigned PO = Offset + Size;
      const Align Alignment = MBB.getAlignment();
      if (Alignment == 1)
        return PO;

      const Align ParentAlign = MBB.getParent()->getAlignment();
      if (Alignment <= ParentAlign)
        return PO + offsetToAlignment(PO, Alignment);

      // The alignment of this MBB is larger than the function's alignment, so we
      // can't tell whether or not it will insert nops. Assume that it will.
      return PO + Alignment.value() + offsetToAlignment(PO, Alignment);
    }
  };

  SmallVector<BasicBlockInfo, 16> BlockInfo;
  std::unique_ptr<RegScavenger> RS;
  LivePhysRegs LiveRegs;

  MachineFunction *MF;
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;

  bool relaxBranchInstructions();
  void scanFunction();

  MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);

  MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
                                           MachineBasicBlock *DestBB);
  void adjustBlockOffsets(MachineBasicBlock &Start);
  bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;

  bool fixupConditionalBranch(MachineInstr &MI);
  bool fixupUnconditionalBranch(MachineInstr &MI);
  uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
  unsigned getInstrOffset(const MachineInstr &MI) const;
  void dumpBBs();
  void verify();

public:
  static char ID;

  BranchRelaxation() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
};

} // end anonymous namespace

char BranchRelaxation::ID = 0;

char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;

INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)

/// verify - check BBOffsets, BBSizes, alignment of islands
void BranchRelaxation::verify() {
#ifndef NDEBUG
  unsigned PrevNum = MF->begin()->getNumber();
  for (MachineBasicBlock &MBB : *MF) {
    const unsigned Num = MBB.getNumber();
    assert(isAligned(MBB.getAlignment(), BlockInfo[Num].Offset));
    assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
    assert(BlockInfo[Num].Size == computeBlockSize(MBB));
    PrevNum = Num;
  }
#endif
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// print block size and offset information - debugging
LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
  for (auto &MBB : *MF) {
    const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
    dbgs() << format("%%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
           << format("size=%#x\n", BBI.Size);
  }
}
#endif

/// scanFunction - Do the initial scan of the function, building up
/// information about each block.
void BranchRelaxation::scanFunction() {
  BlockInfo.clear();
  BlockInfo.resize(MF->getNumBlockIDs());

  // First thing, compute the size of all basic blocks, and see if the function
  // has any inline assembly in it. If so, we have to be conservative about
  // alignment assumptions, as we don't know for sure the size of any
  // instructions in the inline assembly.
  for (MachineBasicBlock &MBB : *MF)
    BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);

  // Compute block offsets and known bits.
  adjustBlockOffsets(*MF->begin());
}

/// computeBlockSize - Compute the size for MBB.
uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
  uint64_t Size = 0;
  for (const MachineInstr &MI : MBB)
    Size += TII->getInstSizeInBytes(MI);
  return Size;
}

/// getInstrOffset - Return the current offset of the specified machine
/// instruction from the start of the function.  This offset changes as stuff is
/// moved around inside the function.
unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
  const MachineBasicBlock *MBB = MI.getParent();

  // The offset is composed of two things: the sum of the sizes of all MBB's
  // before this instruction's block, and the offset from the start of the block
  // it is in.
  unsigned Offset = BlockInfo[MBB->getNumber()].Offset;

  // Sum instructions before MI in MBB.
  for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    Offset += TII->getInstSizeInBytes(*I);
  }

  return Offset;
}

void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
  unsigned PrevNum = Start.getNumber();
  for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
    unsigned Num = MBB.getNumber();
    if (!Num) // block zero is never changed from offset zero.
      continue;
    // Get the offset and known bits at the end of the layout predecessor.
    // Include the alignment of the current block.
    BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);

    PrevNum = Num;
  }
}

/// Insert a new empty basic block and insert it after \BB
MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
  // Create a new MBB for the code after the OrigBB.
  MachineBasicBlock *NewBB =
      MF->CreateMachineBasicBlock(BB.getBasicBlock());
  MF->insert(++BB.getIterator(), NewBB);

  // Insert an entry into BlockInfo to align it properly with the block numbers.
  BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());

  return NewBB;
}

/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch.  Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
                                                           MachineBasicBlock *DestBB) {
  MachineBasicBlock *OrigBB = MI.getParent();

  // Create a new MBB for the code after the OrigBB.
  MachineBasicBlock *NewBB =
      MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
  MF->insert(++OrigBB->getIterator(), NewBB);

  // Splice the instructions starting with MI over to NewBB.
  NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());

  // Add an unconditional branch from OrigBB to NewBB.
  // Note the new unconditional branch is not being recorded.
  // There doesn't seem to be meaningful DebugInfo available; this doesn't
  // correspond to anything in the source.
  TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());

  // Insert an entry into BlockInfo to align it properly with the block numbers.
  BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());

  NewBB->transferSuccessors(OrigBB);
  OrigBB->addSuccessor(NewBB);
  OrigBB->addSuccessor(DestBB);

  // Cleanup potential unconditional branch to successor block.
  // Note that updateTerminator may change the size of the blocks.
  NewBB->updateTerminator();
  OrigBB->updateTerminator();

  // Figure out how large the OrigBB is.  As the first half of the original
  // block, it cannot contain a tablejump.  The size includes
  // the new jump we added.  (It should be possible to do this without
  // recounting everything, but it's very confusing, and this is rarely
  // executed.)
  BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);

  // Figure out how large the NewMBB is. As the second half of the original
  // block, it may contain a tablejump.
  BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);

  // All BBOffsets following these blocks must be modified.
  adjustBlockOffsets(*OrigBB);

  // Need to fix live-in lists if we track liveness.
  if (TRI->trackLivenessAfterRegAlloc(*MF))
    computeAndAddLiveIns(LiveRegs, *NewBB);

  ++NumSplit;

  return NewBB;
}

/// isBlockInRange - Returns true if the distance between specific MI and
/// specific BB can fit in MI's displacement field.
bool BranchRelaxation::isBlockInRange(
  const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
  int64_t BrOffset = getInstrOffset(MI);
  int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;

  if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
    return true;

  LLVM_DEBUG(dbgs() << "Out of range branch to destination "
                    << printMBBReference(DestBB) << " from "
                    << printMBBReference(*MI.getParent()) << " to "
                    << DestOffset << " offset " << DestOffset - BrOffset << '\t'
                    << MI);

  return false;
}

/// fixupConditionalBranch - Fix up a conditional branch whose destination is
/// too far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
  DebugLoc DL = MI.getDebugLoc();
  MachineBasicBlock *MBB = MI.getParent();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  MachineBasicBlock *NewBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;

  auto insertUncondBranch = [&](MachineBasicBlock *MBB,
                                MachineBasicBlock *DestBB) {
    unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
    int NewBrSize = 0;
    TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
    BBSize += NewBrSize;
  };
  auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
                          MachineBasicBlock *FBB,
                          SmallVectorImpl<MachineOperand>& Cond) {
    unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
    int NewBrSize = 0;
    TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
    BBSize += NewBrSize;
  };
  auto removeBranch = [&](MachineBasicBlock *MBB) {
    unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
    int RemovedSize = 0;
    TII->removeBranch(*MBB, &RemovedSize);
    BBSize -= RemovedSize;
  };

  auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
                                  MachineBasicBlock *NewBB) {
    // Keep the block offsets up to date.
    adjustBlockOffsets(*MBB);

    // Need to fix live-in lists if we track liveness.
    if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
      computeAndAddLiveIns(LiveRegs, *NewBB);
  };

  bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
  assert(!Fail && "branches to be relaxed must be analyzable");
  (void)Fail;

  // Add an unconditional branch to the destination and invert the branch
  // condition to jump over it:
  // tbz L1
  // =>
  // tbnz L2
  // b   L1
  // L2:

  bool ReversedCond = !TII->reverseBranchCondition(Cond);
  if (ReversedCond) {
    if (FBB && isBlockInRange(MI, *FBB)) {
      // Last MI in the BB is an unconditional branch. We can simply invert the
      // condition and swap destinations:
      // beq L1
      // b   L2
      // =>
      // bne L2
      // b   L1
      LLVM_DEBUG(dbgs() << "  Invert condition and swap "
                           "its destination with "
                        << MBB->back());

      removeBranch(MBB);
      insertBranch(MBB, FBB, TBB, Cond);
      finalizeBlockChanges(MBB, nullptr);
      return true;
    }
    if (FBB) {
      // We need to split the basic block here to obtain two long-range
      // unconditional branches.
      NewBB = createNewBlockAfter(*MBB);

      insertUncondBranch(NewBB, FBB);
      // Update the succesor lists according to the transformation to follow.
      // Do it here since if there's no split, no update is needed.
      MBB->replaceSuccessor(FBB, NewBB);
      NewBB->addSuccessor(FBB);
    }

    // We now have an appropriate fall-through block in place (either naturally or
    // just created), so we can use the inverted the condition.
    MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));

    LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*TBB)
                      << ", invert condition and change dest. to "
                      << printMBBReference(NextBB) << '\n');

    removeBranch(MBB);
    // Insert a new conditional branch and a new unconditional branch.
    insertBranch(MBB, &NextBB, TBB, Cond);

    finalizeBlockChanges(MBB, NewBB);
    return true;
  }
  // Branch cond can't be inverted.
  // In this case we always add a block after the MBB.
  LLVM_DEBUG(dbgs() << "  The branch condition can't be inverted. "
                    << "  Insert a new BB after " << MBB->back());

  if (!FBB)
    FBB = &(*std::next(MachineFunction::iterator(MBB)));

  // This is the block with cond. branch and the distance to TBB is too long.
  //    beq L1
  // L2:

  // We do the following transformation:
  //    beq NewBB
  //    b L2
  // NewBB:
  //    b L1
  // L2:

  NewBB = createNewBlockAfter(*MBB);
  insertUncondBranch(NewBB, TBB);

  LLVM_DEBUG(dbgs() << "  Insert cond B to the new BB "
                    << printMBBReference(*NewBB)
                    << "  Keep the exiting condition.\n"
                    << "  Insert B to " << printMBBReference(*FBB) << ".\n"
                    << "  In the new BB: Insert B to "
                    << printMBBReference(*TBB) << ".\n");

  // Update the successor lists according to the transformation to follow.
  MBB->replaceSuccessor(TBB, NewBB);
  NewBB->addSuccessor(TBB);

  // Replace branch in the current (MBB) block.
  removeBranch(MBB);
  insertBranch(MBB, NewBB, FBB, Cond);

  finalizeBlockChanges(MBB, NewBB);
  return true;
}

bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
  MachineBasicBlock *MBB = MI.getParent();

  unsigned OldBrSize = TII->getInstSizeInBytes(MI);
  MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);

  int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
  int64_t SrcOffset = getInstrOffset(MI);

  assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));

  BlockInfo[MBB->getNumber()].Size -= OldBrSize;

  MachineBasicBlock *BranchBB = MBB;

  // If this was an expanded conditional branch, there is already a single
  // unconditional branch in a block.
  if (!MBB->empty()) {
    BranchBB = createNewBlockAfter(*MBB);

    // Add live outs.
    for (const MachineBasicBlock *Succ : MBB->successors()) {
      for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
        BranchBB->addLiveIn(LiveIn);
    }

    BranchBB->sortUniqueLiveIns();
    BranchBB->addSuccessor(DestBB);
    MBB->replaceSuccessor(DestBB, BranchBB);
  }

  DebugLoc DL = MI.getDebugLoc();
  MI.eraseFromParent();
  BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
    *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());

  adjustBlockOffsets(*MBB);
  return true;
}

bool BranchRelaxation::relaxBranchInstructions() {
  bool Changed = false;

  // Relaxing branches involves creating new basic blocks, so re-eval
  // end() for termination.
  for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
    MachineBasicBlock &MBB = *I;

    // Empty block?
    MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
    if (Last == MBB.end())
      continue;

    // Expand the unconditional branch first if necessary. If there is a
    // conditional branch, this will end up changing the branch destination of
    // it to be over the newly inserted indirect branch block, which may avoid
    // the need to try expanding the conditional branch first, saving an extra
    // jump.
    if (Last->isUnconditionalBranch()) {
      // Unconditional branch destination might be unanalyzable, assume these
      // are OK.
      if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
        if (!isBlockInRange(*Last, *DestBB)) {
          fixupUnconditionalBranch(*Last);
          ++NumUnconditionalRelaxed;
          Changed = true;
        }
      }
    }

    // Loop over the conditional branches.
    MachineBasicBlock::iterator Next;
    for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
         J != MBB.end(); J = Next) {
      Next = std::next(J);
      MachineInstr &MI = *J;

      if (MI.isConditionalBranch()) {
        MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
        if (!isBlockInRange(MI, *DestBB)) {
          if (Next != MBB.end() && Next->isConditionalBranch()) {
            // If there are multiple conditional branches, this isn't an
            // analyzable block. Split later terminators into a new block so
            // each one will be analyzable.

            splitBlockBeforeInstr(*Next, DestBB);
          } else {
            fixupConditionalBranch(MI);
            ++NumConditionalRelaxed;
          }

          Changed = true;

          // This may have modified all of the terminators, so start over.
          Next = MBB.getFirstTerminator();
        }
      }
    }
  }

  return Changed;
}

bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;

  LLVM_DEBUG(dbgs() << "***** BranchRelaxation *****\n");

  const TargetSubtargetInfo &ST = MF->getSubtarget();
  TII = ST.getInstrInfo();

  TRI = ST.getRegisterInfo();
  if (TRI->trackLivenessAfterRegAlloc(*MF))
    RS.reset(new RegScavenger());

  // Renumber all of the machine basic blocks in the function, guaranteeing that
  // the numbers agree with the position of the block in the function.
  MF->RenumberBlocks();

  // Do the initial scan of the function, building up information about the
  // sizes of each block.
  scanFunction();

  LLVM_DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););

  bool MadeChange = false;
  while (relaxBranchInstructions())
    MadeChange = true;

  // After a while, this might be made debug-only, but it is not expensive.
  verify();

  LLVM_DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());

  BlockInfo.clear();

  return MadeChange;
}