reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BasicBlock class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/BasicBlock.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include <algorithm>

using namespace llvm;

ValueSymbolTable *BasicBlock::getValueSymbolTable() {
  if (Function *F = getParent())
    return F->getValueSymbolTable();
  return nullptr;
}

LLVMContext &BasicBlock::getContext() const {
  return getType()->getContext();
}

// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<Instruction>;

BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
                       BasicBlock *InsertBefore)
  : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {

  if (NewParent)
    insertInto(NewParent, InsertBefore);
  else
    assert(!InsertBefore &&
           "Cannot insert block before another block with no function!");

  setName(Name);
}

void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
  assert(NewParent && "Expected a parent");
  assert(!Parent && "Already has a parent");

  if (InsertBefore)
    NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
  else
    NewParent->getBasicBlockList().push_back(this);
}

BasicBlock::~BasicBlock() {
  // If the address of the block is taken and it is being deleted (e.g. because
  // it is dead), this means that there is either a dangling constant expr
  // hanging off the block, or an undefined use of the block (source code
  // expecting the address of a label to keep the block alive even though there
  // is no indirect branch).  Handle these cases by zapping the BlockAddress
  // nodes.  There are no other possible uses at this point.
  if (hasAddressTaken()) {
    assert(!use_empty() && "There should be at least one blockaddress!");
    Constant *Replacement =
      ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
    while (!use_empty()) {
      BlockAddress *BA = cast<BlockAddress>(user_back());
      BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
                                                       BA->getType()));
      BA->destroyConstant();
    }
  }

  assert(getParent() == nullptr && "BasicBlock still linked into the program!");
  dropAllReferences();
  InstList.clear();
}

void BasicBlock::setParent(Function *parent) {
  // Set Parent=parent, updating instruction symtab entries as appropriate.
  InstList.setSymTabObject(&Parent, parent);
}

iterator_range<filter_iterator<BasicBlock::const_iterator,
                               std::function<bool(const Instruction &)>>>
BasicBlock::instructionsWithoutDebug() const {
  std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
    return !isa<DbgInfoIntrinsic>(I);
  };
  return make_filter_range(*this, Fn);
}

iterator_range<filter_iterator<BasicBlock::iterator,
                               std::function<bool(Instruction &)>>>
BasicBlock::instructionsWithoutDebug() {
  std::function<bool(Instruction &)> Fn = [](Instruction &I) {
    return !isa<DbgInfoIntrinsic>(I);
  };
  return make_filter_range(*this, Fn);
}

filter_iterator<BasicBlock::const_iterator,
                std::function<bool(const Instruction &)>>::difference_type
BasicBlock::sizeWithoutDebug() const {
  return std::distance(instructionsWithoutDebug().begin(),
                       instructionsWithoutDebug().end());
}

void BasicBlock::removeFromParent() {
  getParent()->getBasicBlockList().remove(getIterator());
}

iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
  return getParent()->getBasicBlockList().erase(getIterator());
}

/// Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right before MovePos.
void BasicBlock::moveBefore(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(
      MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
}

/// Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right after MovePos.
void BasicBlock::moveAfter(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(
      ++MovePos->getIterator(), getParent()->getBasicBlockList(),
      getIterator());
}

const Module *BasicBlock::getModule() const {
  return getParent()->getParent();
}

const Instruction *BasicBlock::getTerminator() const {
  if (InstList.empty() || !InstList.back().isTerminator())
    return nullptr;
  return &InstList.back();
}

const CallInst *BasicBlock::getTerminatingMustTailCall() const {
  if (InstList.empty())
    return nullptr;
  const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
  if (!RI || RI == &InstList.front())
    return nullptr;

  const Instruction *Prev = RI->getPrevNode();
  if (!Prev)
    return nullptr;

  if (Value *RV = RI->getReturnValue()) {
    if (RV != Prev)
      return nullptr;

    // Look through the optional bitcast.
    if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
      RV = BI->getOperand(0);
      Prev = BI->getPrevNode();
      if (!Prev || RV != Prev)
        return nullptr;
    }
  }

  if (auto *CI = dyn_cast<CallInst>(Prev)) {
    if (CI->isMustTailCall())
      return CI;
  }
  return nullptr;
}

const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
  if (InstList.empty())
    return nullptr;
  auto *RI = dyn_cast<ReturnInst>(&InstList.back());
  if (!RI || RI == &InstList.front())
    return nullptr;

  if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
    if (Function *F = CI->getCalledFunction())
      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
        return CI;

  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHI() const {
  for (const Instruction &I : *this)
    if (!isa<PHINode>(I))
      return &I;
  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
  for (const Instruction &I : *this)
    if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
      return &I;
  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
  for (const Instruction &I : *this) {
    if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
      continue;

    if (I.isLifetimeStartOrEnd())
      continue;

    return &I;
  }
  return nullptr;
}

BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
  const Instruction *FirstNonPHI = getFirstNonPHI();
  if (!FirstNonPHI)
    return end();

  const_iterator InsertPt = FirstNonPHI->getIterator();
  if (InsertPt->isEHPad()) ++InsertPt;
  return InsertPt;
}

void BasicBlock::dropAllReferences() {
  for (Instruction &I : *this)
    I.dropAllReferences();
}

/// If this basic block has a single predecessor block,
/// return the block, otherwise return a null pointer.
const BasicBlock *BasicBlock::getSinglePredecessor() const {
  const_pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return nullptr;         // No preds.
  const BasicBlock *ThePred = *PI;
  ++PI;
  return (PI == E) ? ThePred : nullptr /*multiple preds*/;
}

/// If this basic block has a unique predecessor block,
/// return the block, otherwise return a null pointer.
/// Note that unique predecessor doesn't mean single edge, there can be
/// multiple edges from the unique predecessor to this block (for example
/// a switch statement with multiple cases having the same destination).
const BasicBlock *BasicBlock::getUniquePredecessor() const {
  const_pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return nullptr; // No preds.
  const BasicBlock *PredBB = *PI;
  ++PI;
  for (;PI != E; ++PI) {
    if (*PI != PredBB)
      return nullptr;
    // The same predecessor appears multiple times in the predecessor list.
    // This is OK.
  }
  return PredBB;
}

bool BasicBlock::hasNPredecessors(unsigned N) const {
  return hasNItems(pred_begin(this), pred_end(this), N);
}

bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
  return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
}

const BasicBlock *BasicBlock::getSingleSuccessor() const {
  succ_const_iterator SI = succ_begin(this), E = succ_end(this);
  if (SI == E) return nullptr; // no successors
  const BasicBlock *TheSucc = *SI;
  ++SI;
  return (SI == E) ? TheSucc : nullptr /* multiple successors */;
}

const BasicBlock *BasicBlock::getUniqueSuccessor() const {
  succ_const_iterator SI = succ_begin(this), E = succ_end(this);
  if (SI == E) return nullptr; // No successors
  const BasicBlock *SuccBB = *SI;
  ++SI;
  for (;SI != E; ++SI) {
    if (*SI != SuccBB)
      return nullptr;
    // The same successor appears multiple times in the successor list.
    // This is OK.
  }
  return SuccBB;
}

iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
  PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
  return make_range<phi_iterator>(P, nullptr);
}

/// This method is used to notify a BasicBlock that the
/// specified Predecessor of the block is no longer able to reach it.  This is
/// actually not used to update the Predecessor list, but is actually used to
/// update the PHI nodes that reside in the block.  Note that this should be
/// called while the predecessor still refers to this block.
///
void BasicBlock::removePredecessor(BasicBlock *Pred,
                                   bool KeepOneInputPHIs) {
  assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
         "removePredecessor: BB is not a predecessor!");

  if (InstList.empty()) return;
  PHINode *APN = dyn_cast<PHINode>(&front());
  if (!APN) return;   // Quick exit.

  // If there are exactly two predecessors, then we want to nuke the PHI nodes
  // altogether.  However, we cannot do this, if this in this case:
  //
  //  Loop:
  //    %x = phi [X, Loop]
  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
  //    br Loop                 ;; %x2 does not dominate all uses
  //
  // This is because the PHI node input is actually taken from the predecessor
  // basic block.  The only case this can happen is with a self loop, so we
  // check for this case explicitly now.
  //
  unsigned max_idx = APN->getNumIncomingValues();
  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
  if (max_idx == 2) {
    BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);

    // Disable PHI elimination!
    if (this == Other) max_idx = 3;
  }

  // <= Two predecessors BEFORE I remove one?
  if (max_idx <= 2 && !KeepOneInputPHIs) {
    // Yup, loop through and nuke the PHI nodes
    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
      // Remove the predecessor first.
      PN->removeIncomingValue(Pred, !KeepOneInputPHIs);

      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
      if (max_idx == 2) {
        if (PN->getIncomingValue(0) != PN)
          PN->replaceAllUsesWith(PN->getIncomingValue(0));
        else
          // We are left with an infinite loop with no entries: kill the PHI.
          PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
        getInstList().pop_front();    // Remove the PHI node
      }

      // If the PHI node already only had one entry, it got deleted by
      // removeIncomingValue.
    }
  } else {
    // Okay, now we know that we need to remove predecessor #pred_idx from all
    // PHI nodes.  Iterate over each PHI node fixing them up
    PHINode *PN;
    for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
      ++II;
      PN->removeIncomingValue(Pred, false);
      // If all incoming values to the Phi are the same, we can replace the Phi
      // with that value.
      Value* PNV = nullptr;
      if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue()))
        if (PNV != PN) {
          PN->replaceAllUsesWith(PNV);
          PN->eraseFromParent();
        }
    }
  }
}

bool BasicBlock::canSplitPredecessors() const {
  const Instruction *FirstNonPHI = getFirstNonPHI();
  if (isa<LandingPadInst>(FirstNonPHI))
    return true;
  // This is perhaps a little conservative because constructs like
  // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
  // cannot handle such things just yet.
  if (FirstNonPHI->isEHPad())
    return false;
  return true;
}

bool BasicBlock::isLegalToHoistInto() const {
  auto *Term = getTerminator();
  // No terminator means the block is under construction.
  if (!Term)
    return true;

  // If the block has no successors, there can be no instructions to hoist.
  assert(Term->getNumSuccessors() > 0);

  // Instructions should not be hoisted across exception handling boundaries.
  return !Term->isExceptionalTerminator();
}

/// This splits a basic block into two at the specified
/// instruction.  Note that all instructions BEFORE the specified iterator stay
/// as part of the original basic block, an unconditional branch is added to
/// the new BB, and the rest of the instructions in the BB are moved to the new
/// BB, including the old terminator.  This invalidates the iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
  assert(I != InstList.end() &&
         "Trying to get me to create degenerate basic block!");

  BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
                                       this->getNextNode());

  // Save DebugLoc of split point before invalidating iterator.
  DebugLoc Loc = I->getDebugLoc();
  // Move all of the specified instructions from the original basic block into
  // the new basic block.
  New->getInstList().splice(New->end(), this->getInstList(), I, end());

  // Add a branch instruction to the newly formed basic block.
  BranchInst *BI = BranchInst::Create(New, this);
  BI->setDebugLoc(Loc);

  // Now we must loop through all of the successors of the New block (which
  // _were_ the successors of the 'this' block), and update any PHI nodes in
  // successors.  If there were PHI nodes in the successors, then they need to
  // know that incoming branches will be from New, not from Old (this).
  //
  New->replaceSuccessorsPhiUsesWith(this, New);
  return New;
}

void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
  // N.B. This might not be a complete BasicBlock, so don't assume
  // that it ends with a non-phi instruction.
  for (iterator II = begin(), IE = end(); II != IE; ++II) {
    PHINode *PN = dyn_cast<PHINode>(II);
    if (!PN)
      break;
    PN->replaceIncomingBlockWith(Old, New);
  }
}

void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
                                              BasicBlock *New) {
  Instruction *TI = getTerminator();
  if (!TI)
    // Cope with being called on a BasicBlock that doesn't have a terminator
    // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
    return;
  llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
    Succ->replacePhiUsesWith(Old, New);
  });
}

void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
  this->replaceSuccessorsPhiUsesWith(this, New);
}

/// Return true if this basic block is a landing pad. I.e., it's
/// the destination of the 'unwind' edge of an invoke instruction.
bool BasicBlock::isLandingPad() const {
  return isa<LandingPadInst>(getFirstNonPHI());
}

/// Return the landingpad instruction associated with the landing pad.
const LandingPadInst *BasicBlock::getLandingPadInst() const {
  return dyn_cast<LandingPadInst>(getFirstNonPHI());
}

Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
  const Instruction *TI = getTerminator();
  if (MDNode *MDIrrLoopHeader =
      TI->getMetadata(LLVMContext::MD_irr_loop)) {
    MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
    if (MDName->getString().equals("loop_header_weight")) {
      auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
      return Optional<uint64_t>(CI->getValue().getZExtValue());
    }
  }
  return Optional<uint64_t>();
}

BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
  while (isa<DbgInfoIntrinsic>(It))
    ++It;
  return It;
}