reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class.  Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
// In some cases, arguments to intrinsics need to be generic and are defined as
// type pointer to empty struct { }*.  To access the real item of interest the
// cast instruction needs to be stripped away.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
/// DbgVariableIntrinsic - This is the common base class for debug info
/// intrinsics for variables.
///

Value *DbgVariableIntrinsic::getVariableLocation(bool AllowNullOp) const {
  Value *Op = getArgOperand(0);
  if (AllowNullOp && !Op)
    return nullptr;

  auto *MD = cast<MetadataAsValue>(Op)->getMetadata();
  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    return V->getValue();

  // When the value goes to null, it gets replaced by an empty MDNode.
  assert(!cast<MDNode>(MD)->getNumOperands() && "Expected an empty MDNode");
  return nullptr;
}

Optional<uint64_t> DbgVariableIntrinsic::getFragmentSizeInBits() const {
  if (auto Fragment = getExpression()->getFragmentInfo())
    return Fragment->SizeInBits;
  return getVariable()->getSizeInBits();
}

int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
                                               StringRef Name) {
  assert(Name.startswith("llvm."));

  // Do successive binary searches of the dotted name components. For
  // "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
  // intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
  // "llvm.gc.experimental.statepoint", and then we will stop as the range is
  // size 1. During the search, we can skip the prefix that we already know is
  // identical. By using strncmp we consider names with differing suffixes to
  // be part of the equal range.
  size_t CmpEnd = 4; // Skip the "llvm" component.
  const char *const *Low = NameTable.begin();
  const char *const *High = NameTable.end();
  const char *const *LastLow = Low;
  while (CmpEnd < Name.size() && High - Low > 0) {
    size_t CmpStart = CmpEnd;
    CmpEnd = Name.find('.', CmpStart + 1);
    CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
    auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
      return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
    };
    LastLow = Low;
    std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
  }
  if (High - Low > 0)
    LastLow = Low;

  if (LastLow == NameTable.end())
    return -1;
  StringRef NameFound = *LastLow;
  if (Name == NameFound ||
      (Name.startswith(NameFound) && Name[NameFound.size()] == '.'))
    return LastLow - NameTable.begin();
  return -1;
}

Value *InstrProfIncrementInst::getStep() const {
  if (InstrProfIncrementInstStep::classof(this)) {
    return const_cast<Value *>(getArgOperand(4));
  }
  const Module *M = getModule();
  LLVMContext &Context = M->getContext();
  return ConstantInt::get(Type::getInt64Ty(Context), 1);
}

Optional<ConstrainedFPIntrinsic::RoundingMode>
ConstrainedFPIntrinsic::getRoundingMode() const {
  unsigned NumOperands = getNumArgOperands();
  Metadata *MD =
      cast<MetadataAsValue>(getArgOperand(NumOperands - 2))->getMetadata();
  if (!MD || !isa<MDString>(MD))
    return None;
  return StrToRoundingMode(cast<MDString>(MD)->getString());
}

Optional<ConstrainedFPIntrinsic::RoundingMode>
ConstrainedFPIntrinsic::StrToRoundingMode(StringRef RoundingArg) {
  // For dynamic rounding mode, we use round to nearest but we will set the
  // 'exact' SDNodeFlag so that the value will not be rounded.
  return StringSwitch<Optional<RoundingMode>>(RoundingArg)
    .Case("round.dynamic",    rmDynamic)
    .Case("round.tonearest",  rmToNearest)
    .Case("round.downward",   rmDownward)
    .Case("round.upward",     rmUpward)
    .Case("round.towardzero", rmTowardZero)
    .Default(None);
}

Optional<StringRef>
ConstrainedFPIntrinsic::RoundingModeToStr(RoundingMode UseRounding) {
  Optional<StringRef> RoundingStr = None;
  switch (UseRounding) {
  case ConstrainedFPIntrinsic::rmDynamic:
    RoundingStr = "round.dynamic";
    break;
  case ConstrainedFPIntrinsic::rmToNearest:
    RoundingStr = "round.tonearest";
    break;
  case ConstrainedFPIntrinsic::rmDownward:
    RoundingStr = "round.downward";
    break;
  case ConstrainedFPIntrinsic::rmUpward:
    RoundingStr = "round.upward";
    break;
  case ConstrainedFPIntrinsic::rmTowardZero:
    RoundingStr = "round.towardzero";
    break;
  }
  return RoundingStr;
}

Optional<ConstrainedFPIntrinsic::ExceptionBehavior>
ConstrainedFPIntrinsic::getExceptionBehavior() const {
  unsigned NumOperands = getNumArgOperands();
  Metadata *MD =
      cast<MetadataAsValue>(getArgOperand(NumOperands - 1))->getMetadata();
  if (!MD || !isa<MDString>(MD))
    return None;
  return StrToExceptionBehavior(cast<MDString>(MD)->getString());
}

Optional<ConstrainedFPIntrinsic::ExceptionBehavior>
ConstrainedFPIntrinsic::StrToExceptionBehavior(StringRef ExceptionArg) {
  return StringSwitch<Optional<ExceptionBehavior>>(ExceptionArg)
    .Case("fpexcept.ignore",  ebIgnore)
    .Case("fpexcept.maytrap", ebMayTrap)
    .Case("fpexcept.strict",  ebStrict)
    .Default(None);
}

Optional<StringRef>
ConstrainedFPIntrinsic::ExceptionBehaviorToStr(ExceptionBehavior UseExcept) {
  Optional<StringRef> ExceptStr = None;
  switch (UseExcept) {
  case ConstrainedFPIntrinsic::ebStrict:
    ExceptStr = "fpexcept.strict";
    break;
  case ConstrainedFPIntrinsic::ebIgnore:
    ExceptStr = "fpexcept.ignore";
    break;
  case ConstrainedFPIntrinsic::ebMayTrap:
    ExceptStr = "fpexcept.maytrap";
    break;
  }
  return ExceptStr;
}

bool ConstrainedFPIntrinsic::isUnaryOp() const {
  switch (getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::experimental_constrained_fptosi:
    case Intrinsic::experimental_constrained_fptoui:
    case Intrinsic::experimental_constrained_fptrunc:
    case Intrinsic::experimental_constrained_fpext:
    case Intrinsic::experimental_constrained_sqrt:
    case Intrinsic::experimental_constrained_sin:
    case Intrinsic::experimental_constrained_cos:
    case Intrinsic::experimental_constrained_exp:
    case Intrinsic::experimental_constrained_exp2:
    case Intrinsic::experimental_constrained_log:
    case Intrinsic::experimental_constrained_log10:
    case Intrinsic::experimental_constrained_log2:
    case Intrinsic::experimental_constrained_lrint:
    case Intrinsic::experimental_constrained_llrint:
    case Intrinsic::experimental_constrained_rint:
    case Intrinsic::experimental_constrained_nearbyint:
    case Intrinsic::experimental_constrained_ceil:
    case Intrinsic::experimental_constrained_floor:
    case Intrinsic::experimental_constrained_lround:
    case Intrinsic::experimental_constrained_llround:
    case Intrinsic::experimental_constrained_round:
    case Intrinsic::experimental_constrained_trunc:
      return true;
  }
}

bool ConstrainedFPIntrinsic::isTernaryOp() const {
  switch (getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::experimental_constrained_fma:
      return true;
  }
}

Instruction::BinaryOps BinaryOpIntrinsic::getBinaryOp() const {
  switch (getIntrinsicID()) {
    case Intrinsic::uadd_with_overflow:
    case Intrinsic::sadd_with_overflow:
    case Intrinsic::uadd_sat:
    case Intrinsic::sadd_sat:
      return Instruction::Add;
    case Intrinsic::usub_with_overflow:
    case Intrinsic::ssub_with_overflow:
    case Intrinsic::usub_sat:
    case Intrinsic::ssub_sat:
      return Instruction::Sub;
    case Intrinsic::umul_with_overflow:
    case Intrinsic::smul_with_overflow:
      return Instruction::Mul;
    default:
      llvm_unreachable("Invalid intrinsic");
  }
}

bool BinaryOpIntrinsic::isSigned() const {
  switch (getIntrinsicID()) {
    case Intrinsic::sadd_with_overflow:
    case Intrinsic::ssub_with_overflow:
    case Intrinsic::smul_with_overflow:
    case Intrinsic::sadd_sat:
    case Intrinsic::ssub_sat:
      return true;
    default:
      return false;
  }
}

unsigned BinaryOpIntrinsic::getNoWrapKind() const {
  if (isSigned())
    return OverflowingBinaryOperator::NoSignedWrap;
  else
    return OverflowingBinaryOperator::NoUnsignedWrap;
}