reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
//=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the custom routines for the ARM Calling Convention that
// aren't done by tablegen, and includes the table generated implementations.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMCallingConv.h"
#include "ARMSubtarget.h"
#include "ARMRegisterInfo.h"
using namespace llvm;

// APCS f64 is in register pairs, possibly split to stack
static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                          CCValAssign::LocInfo &LocInfo,
                          CCState &State, bool CanFail) {
  static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };

  // Try to get the first register.
  if (unsigned Reg = State.AllocateReg(RegList))
    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
  else {
    // For the 2nd half of a v2f64, do not fail.
    if (CanFail)
      return false;

    // Put the whole thing on the stack.
    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
                                           State.AllocateStack(8, 4),
                                           LocVT, LocInfo));
    return true;
  }

  // Try to get the second register.
  if (unsigned Reg = State.AllocateReg(RegList))
    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
  else
    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
                                           State.AllocateStack(4, 4),
                                           LocVT, LocInfo));
  return true;
}

static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                                   CCValAssign::LocInfo &LocInfo,
                                   ISD::ArgFlagsTy &ArgFlags,
                                   CCState &State) {
  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
    return false;
  if (LocVT == MVT::v2f64 &&
      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
    return false;
  return true;  // we handled it
}

// AAPCS f64 is in aligned register pairs
static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                           CCValAssign::LocInfo &LocInfo,
                           CCState &State, bool CanFail) {
  static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
  static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
  static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
  static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };

  unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList);
  if (Reg == 0) {

    // If we had R3 unallocated only, now we still must to waste it.
    Reg = State.AllocateReg(GPRArgRegs);
    assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");

    // For the 2nd half of a v2f64, do not just fail.
    if (CanFail)
      return false;

    // Put the whole thing on the stack.
    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
                                           State.AllocateStack(8, 8),
                                           LocVT, LocInfo));
    return true;
  }

  unsigned i;
  for (i = 0; i < 2; ++i)
    if (HiRegList[i] == Reg)
      break;

  unsigned T = State.AllocateReg(LoRegList[i]);
  (void)T;
  assert(T == LoRegList[i] && "Could not allocate register");

  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
                                         LocVT, LocInfo));
  return true;
}

static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                                    CCValAssign::LocInfo &LocInfo,
                                    ISD::ArgFlagsTy &ArgFlags,
                                    CCState &State) {
  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
    return false;
  if (LocVT == MVT::v2f64 &&
      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
    return false;
  return true;  // we handled it
}

static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                         CCValAssign::LocInfo &LocInfo, CCState &State) {
  static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
  static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };

  unsigned Reg = State.AllocateReg(HiRegList, LoRegList);
  if (Reg == 0)
    return false; // we didn't handle it

  unsigned i;
  for (i = 0; i < 2; ++i)
    if (HiRegList[i] == Reg)
      break;

  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
                                         LocVT, LocInfo));
  return true;
}

static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                                      CCValAssign::LocInfo &LocInfo,
                                      ISD::ArgFlagsTy &ArgFlags,
                                      CCState &State) {
  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
    return false;
  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
    return false;
  return true;  // we handled it
}

static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                                       CCValAssign::LocInfo &LocInfo,
                                       ISD::ArgFlagsTy &ArgFlags,
                                       CCState &State) {
  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
                                   State);
}

static const MCPhysReg RRegList[] = { ARM::R0,  ARM::R1,  ARM::R2,  ARM::R3 };

static const MCPhysReg SRegList[] = { ARM::S0,  ARM::S1,  ARM::S2,  ARM::S3,
                                      ARM::S4,  ARM::S5,  ARM::S6,  ARM::S7,
                                      ARM::S8,  ARM::S9,  ARM::S10, ARM::S11,
                                      ARM::S12, ARM::S13, ARM::S14,  ARM::S15 };
static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
                                      ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };


// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
// has InConsecutiveRegs set, and that the last member also has
// InConsecutiveRegsLast set. We must process all members of the HA before
// we can allocate it, as we need to know the total number of registers that
// will be needed in order to (attempt to) allocate a contiguous block.
static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
                                          MVT &LocVT,
                                          CCValAssign::LocInfo &LocInfo,
                                          ISD::ArgFlagsTy &ArgFlags,
                                          CCState &State) {
  SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();

  // AAPCS HFAs must have 1-4 elements, all of the same type
  if (PendingMembers.size() > 0)
    assert(PendingMembers[0].getLocVT() == LocVT);

  // Add the argument to the list to be allocated once we know the size of the
  // aggregate. Store the type's required alignmnent as extra info for later: in
  // the [N x i64] case all trace has been removed by the time we actually get
  // to do allocation.
  PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
                                                   ArgFlags.getOrigAlign()));

  if (!ArgFlags.isInConsecutiveRegsLast())
    return true;

  // Try to allocate a contiguous block of registers, each of the correct
  // size to hold one member.
  auto &DL = State.getMachineFunction().getDataLayout();
  unsigned StackAlign = DL.getStackAlignment().value();
  unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign);

  ArrayRef<MCPhysReg> RegList;
  switch (LocVT.SimpleTy) {
  case MVT::i32: {
    RegList = RRegList;
    unsigned RegIdx = State.getFirstUnallocated(RegList);

    // First consume all registers that would give an unaligned object. Whether
    // we go on stack or in regs, no-one will be using them in future.
    unsigned RegAlign = alignTo(Align, 4) / 4;
    while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
      State.AllocateReg(RegList[RegIdx++]);

    break;
  }
  case MVT::f16:
  case MVT::f32:
    RegList = SRegList;
    break;
  case MVT::v4f16:
  case MVT::f64:
    RegList = DRegList;
    break;
  case MVT::v8f16:
  case MVT::v2f64:
    RegList = QRegList;
    break;
  default:
    llvm_unreachable("Unexpected member type for block aggregate");
    break;
  }

  unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
  if (RegResult) {
    for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
         It != PendingMembers.end(); ++It) {
      It->convertToReg(RegResult);
      State.addLoc(*It);
      ++RegResult;
    }
    PendingMembers.clear();
    return true;
  }

  // Register allocation failed, we'll be needing the stack
  unsigned Size = LocVT.getSizeInBits() / 8;
  if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
    // If nothing else has used the stack until this point, a non-HFA aggregate
    // can be split between regs and stack.
    unsigned RegIdx = State.getFirstUnallocated(RegList);
    for (auto &It : PendingMembers) {
      if (RegIdx >= RegList.size())
        It.convertToMem(State.AllocateStack(Size, Size));
      else
        It.convertToReg(State.AllocateReg(RegList[RegIdx++]));

      State.addLoc(It);
    }
    PendingMembers.clear();
    return true;
  } else if (LocVT != MVT::i32)
    RegList = SRegList;

  // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
  for (auto Reg : RegList)
    State.AllocateReg(Reg);

  // After the first item has been allocated, the rest are packed as tightly as
  // possible. (E.g. an incoming i64 would have starting Align of 8, but we'll
  // be allocating a bunch of i32 slots).
  unsigned RestAlign = std::min(Align, Size);

  for (auto &It : PendingMembers) {
    It.convertToMem(State.AllocateStack(Size, Align));
    State.addLoc(It);
    Align = RestAlign;
  }

  // All pending members have now been allocated
  PendingMembers.clear();

  // This will be allocated by the last member of the aggregate
  return true;
}

// Include the table generated calling convention implementations.
#include "ARMGenCallingConv.inc"