1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
| //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARM specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMCallLowering.h"
#include "ARMLegalizerInfo.h"
#include "ARMRegisterBankInfo.h"
#include "ARMSubtarget.h"
#include "ARMFrameLowering.h"
#include "ARMInstrInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#define DEBUG_TYPE "arm-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "ARMGenSubtargetInfo.inc"
static cl::opt<bool>
UseFusedMulOps("arm-use-mulops",
cl::init(true), cl::Hidden);
enum ITMode {
DefaultIT,
RestrictedIT,
NoRestrictedIT
};
static cl::opt<ITMode>
IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
cl::ZeroOrMore,
cl::values(clEnumValN(DefaultIT, "arm-default-it",
"Generate IT block based on arch"),
clEnumValN(RestrictedIT, "arm-restrict-it",
"Disallow deprecated IT based on ARMv8"),
clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
"Allow IT blocks based on ARMv7")));
/// ForceFastISel - Use the fast-isel, even for subtargets where it is not
/// currently supported (for testing only).
static cl::opt<bool>
ForceFastISel("arm-force-fast-isel",
cl::init(false), cl::Hidden);
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
initSubtargetFeatures(CPU, FS);
return *this;
}
ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
StringRef FS) {
ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
if (STI.isThumb1Only())
return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
return new ARMFrameLowering(STI);
}
ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const ARMBaseTargetMachine &TM, bool IsLittle,
bool MinSize)
: ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
TargetTriple(TT), Options(TM.Options), TM(TM),
FrameLowering(initializeFrameLowering(CPU, FS)),
// At this point initializeSubtargetDependencies has been called so
// we can query directly.
InstrInfo(isThumb1Only()
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
: !isThumb()
? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
: (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
TLInfo(TM, *this) {
CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
Legalizer.reset(new ARMLegalizerInfo(*this));
auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
InstSelector.reset(createARMInstructionSelector(
*static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
RegBankInfo.reset(RBI);
}
const CallLowering *ARMSubtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
InstructionSelector *ARMSubtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
bool ARMSubtarget::isXRaySupported() const {
// We don't currently suppport Thumb, but Windows requires Thumb.
return hasV6Ops() && hasARMOps() && !isTargetWindows();
}
void ARMSubtarget::initializeEnvironment() {
// MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
// directly from it, but we can try to make sure they're consistent when both
// available.
UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
Options.ExceptionModel == ExceptionHandling::None) ||
Options.ExceptionModel == ExceptionHandling::SjLj;
assert((!TM.getMCAsmInfo() ||
(TM.getMCAsmInfo()->getExceptionHandlingType() ==
ExceptionHandling::SjLj) == UseSjLjEH) &&
"inconsistent sjlj choice between CodeGen and MC");
}
void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
if (CPUString.empty()) {
CPUString = "generic";
if (isTargetDarwin()) {
StringRef ArchName = TargetTriple.getArchName();
ARM::ArchKind AK = ARM::parseArch(ArchName);
if (AK == ARM::ArchKind::ARMV7S)
// Default to the Swift CPU when targeting armv7s/thumbv7s.
CPUString = "swift";
else if (AK == ARM::ArchKind::ARMV7K)
// Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
// ARMv7k does not use SjLj exception handling.
CPUString = "cortex-a7";
}
}
// Insert the architecture feature derived from the target triple into the
// feature string. This is important for setting features that are implied
// based on the architecture version.
std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
else
ArchFS = FS;
}
ParseSubtargetFeatures(CPUString, ArchFS);
// FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
// Assert this for now to make the change obvious.
assert(hasV6T2Ops() || !hasThumb2());
// Execute only support requires movt support
if (genExecuteOnly()) {
NoMovt = false;
assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
}
// Keep a pointer to static instruction cost data for the specified CPU.
SchedModel = getSchedModelForCPU(CPUString);
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUString);
// FIXME: this is invalid for WindowsCE
if (isTargetWindows())
NoARM = true;
if (isAAPCS_ABI())
stackAlignment = Align(8);
if (isTargetNaCl() || isAAPCS16_ABI())
stackAlignment = Align(16);
// FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
// emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
// the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
// support in the assembler and linker to be used. This would need to be
// fixed to fully support tail calls in Thumb1.
//
// For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
// baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
// means if we need to reload LR, it takes extra instructions, which outweighs
// the value of the tail call; but here we don't know yet whether LR is going
// to be used. We take the optimistic approach of generating the tail call and
// perhaps taking a hit if we need to restore the LR.
// Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
// but we need to make sure there are enough registers; the only valid
// registers are the 4 used for parameters. We don't currently do this
// case.
SupportsTailCall = !isThumb() || hasV8MBaselineOps();
if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
SupportsTailCall = false;
switch (IT) {
case DefaultIT:
RestrictIT = hasV8Ops();
break;
case RestrictedIT:
RestrictIT = true;
break;
case NoRestrictedIT:
RestrictIT = false;
break;
}
// NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
const FeatureBitset &Bits = getFeatureBits();
if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
(Options.UnsafeFPMath || isTargetDarwin()))
UseNEONForSinglePrecisionFP = true;
if (isRWPI())
ReserveR9 = true;
// If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
if (MVEVectorCostFactor == 0)
MVEVectorCostFactor = 2;
// FIXME: Teach TableGen to deal with these instead of doing it manually here.
switch (ARMProcFamily) {
case Others:
case CortexA5:
break;
case CortexA7:
LdStMultipleTiming = DoubleIssue;
break;
case CortexA8:
LdStMultipleTiming = DoubleIssue;
break;
case CortexA9:
LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
PreISelOperandLatencyAdjustment = 1;
break;
case CortexA12:
break;
case CortexA15:
MaxInterleaveFactor = 2;
PreISelOperandLatencyAdjustment = 1;
PartialUpdateClearance = 12;
break;
case CortexA17:
case CortexA32:
case CortexA35:
case CortexA53:
case CortexA55:
case CortexA57:
case CortexA72:
case CortexA73:
case CortexA75:
case CortexA76:
case CortexR4:
case CortexR4F:
case CortexR5:
case CortexR7:
case CortexM3:
case CortexR52:
break;
case Exynos:
LdStMultipleTiming = SingleIssuePlusExtras;
MaxInterleaveFactor = 4;
if (!isThumb())
PrefLoopLogAlignment = 3;
break;
case Kryo:
break;
case Krait:
PreISelOperandLatencyAdjustment = 1;
break;
case NeoverseN1:
break;
case Swift:
MaxInterleaveFactor = 2;
LdStMultipleTiming = SingleIssuePlusExtras;
PreISelOperandLatencyAdjustment = 1;
PartialUpdateClearance = 12;
break;
}
}
bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
bool ARMSubtarget::isAPCS_ABI() const {
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
}
bool ARMSubtarget::isAAPCS_ABI() const {
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
}
bool ARMSubtarget::isAAPCS16_ABI() const {
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
}
bool ARMSubtarget::isROPI() const {
return TM.getRelocationModel() == Reloc::ROPI ||
TM.getRelocationModel() == Reloc::ROPI_RWPI;
}
bool ARMSubtarget::isRWPI() const {
return TM.getRelocationModel() == Reloc::RWPI ||
TM.getRelocationModel() == Reloc::ROPI_RWPI;
}
bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
return true;
// 32 bit macho has no relocation for a-b if a is undefined, even if b is in
// the section that is being relocated. This means we have to use o load even
// for GVs that are known to be local to the dso.
if (isTargetMachO() && TM.isPositionIndependent() &&
(GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
return true;
return false;
}
bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
return isTargetELF() && TM.isPositionIndependent() &&
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
}
unsigned ARMSubtarget::getMispredictionPenalty() const {
return SchedModel.MispredictPenalty;
}
bool ARMSubtarget::enableMachineScheduler() const {
// The MachineScheduler can increase register usage, so we use more high
// registers and end up with more T2 instructions that cannot be converted to
// T1 instructions. At least until we do better at converting to thumb1
// instructions, on cortex-m at Oz where we are size-paranoid, don't use the
// Machine scheduler, relying on the DAG register pressure scheduler instead.
if (isMClass() && hasMinSize())
return false;
// Enable the MachineScheduler before register allocation for subtargets
// with the use-misched feature.
return useMachineScheduler();
}
// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
bool ARMSubtarget::enablePostRAScheduler() const {
if (disablePostRAScheduler())
return false;
// Don't reschedule potential IT blocks.
return !isThumb1Only();
}
bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
bool ARMSubtarget::useStride4VFPs() const {
// For general targets, the prologue can grow when VFPs are allocated with
// stride 4 (more vpush instructions). But WatchOS uses a compact unwind
// format which it's more important to get right.
return isTargetWatchABI() ||
(useWideStrideVFP() && !OptMinSize);
}
bool ARMSubtarget::useMovt() const {
// NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
// immediates as it is inherently position independent, and may be out of
// range otherwise.
return !NoMovt && hasV8MBaselineOps() &&
(isTargetWindows() || !OptMinSize || genExecuteOnly());
}
bool ARMSubtarget::useFastISel() const {
// Enable fast-isel for any target, for testing only.
if (ForceFastISel)
return true;
// Limit fast-isel to the targets that are or have been tested.
if (!hasV6Ops())
return false;
// Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
return TM.Options.EnableFastISel &&
((isTargetMachO() && !isThumb1Only()) ||
(isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
}
unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
// The GPR register class has multiple possible allocation orders, with
// tradeoffs preferred by different sub-architectures and optimisation goals.
// The allocation orders are:
// 0: (the default tablegen order, not used)
// 1: r14, r0-r13
// 2: r0-r7
// 3: r0-r7, r12, lr, r8-r11
// Note that the register allocator will change this order so that
// callee-saved registers are used later, as they require extra work in the
// prologue/epilogue (though we sometimes override that).
// For thumb1-only targets, only the low registers are allocatable.
if (isThumb1Only())
return 2;
// Allocate low registers first, so we can select more 16-bit instructions.
// We also (in ignoreCSRForAllocationOrder) override the default behaviour
// with regards to callee-saved registers, because pushing extra registers is
// much cheaper (in terms of code size) than using high registers. After
// that, we allocate r12 (doesn't need to be saved), lr (saving it means we
// can return with the pop, don't need an extra "bx lr") and then the rest of
// the high registers.
if (isThumb2() && MF.getFunction().hasMinSize())
return 3;
// Otherwise, allocate in the default order, using LR first because saving it
// allows a shorter epilogue sequence.
return 1;
}
bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
unsigned PhysReg) const {
// To minimize code size in Thumb2, we prefer the usage of low regs (lower
// cost per use) so we can use narrow encoding. By default, caller-saved
// registers (e.g. lr, r12) are always allocated first, regardless of
// their cost per use. When optForMinSize, we prefer the low regs even if
// they are CSR because usually push/pop can be folded into existing ones.
return isThumb2() && MF.getFunction().hasMinSize() &&
ARM::GPRRegClass.contains(PhysReg);
}
|