reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, other late
// optimizations, or simply the encoding of the instructions.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
#include "llvm/IR/GlobalValue.h"
using namespace llvm;

#define DEBUG_TYPE "x86-pseudo"
#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"

namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
  static char ID;
  X86ExpandPseudo() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addPreservedID(MachineLoopInfoID);
    AU.addPreservedID(MachineDominatorsID);
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  const X86Subtarget *STI;
  const X86InstrInfo *TII;
  const X86RegisterInfo *TRI;
  const X86MachineFunctionInfo *X86FI;
  const X86FrameLowering *X86FL;

  bool runOnMachineFunction(MachineFunction &Fn) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

  StringRef getPassName() const override {
    return "X86 pseudo instruction expansion pass";
  }

private:
  void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
                               MachineBasicBlock::iterator MBBI);

  bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
  bool ExpandMBB(MachineBasicBlock &MBB);
};
char X86ExpandPseudo::ID = 0;

} // End anonymous namespace.

INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
                false)

void X86ExpandPseudo::ExpandICallBranchFunnel(
    MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
  MachineBasicBlock *JTMBB = MBB;
  MachineInstr *JTInst = &*MBBI;
  MachineFunction *MF = MBB->getParent();
  const BasicBlock *BB = MBB->getBasicBlock();
  auto InsPt = MachineFunction::iterator(MBB);
  ++InsPt;

  std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
  DebugLoc DL = JTInst->getDebugLoc();
  MachineOperand Selector = JTInst->getOperand(0);
  const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();

  auto CmpTarget = [&](unsigned Target) {
    if (Selector.isReg())
      MBB->addLiveIn(Selector.getReg());
    BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
        .addReg(X86::RIP)
        .addImm(1)
        .addReg(0)
        .addGlobalAddress(CombinedGlobal,
                          JTInst->getOperand(2 + 2 * Target).getImm())
        .addReg(0);
    BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
        .add(Selector)
        .addReg(X86::R11);
  };

  auto CreateMBB = [&]() {
    auto *NewMBB = MF->CreateMachineBasicBlock(BB);
    MBB->addSuccessor(NewMBB);
    if (!MBB->isLiveIn(X86::EFLAGS))
      MBB->addLiveIn(X86::EFLAGS);
    return NewMBB;
  };

  auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
    BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);

    auto *ElseMBB = CreateMBB();
    MF->insert(InsPt, ElseMBB);
    MBB = ElseMBB;
    MBBI = MBB->end();
  };

  auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
    auto *ThenMBB = CreateMBB();
    TargetMBBs.push_back({ThenMBB, Target});
    EmitCondJump(CC, ThenMBB);
  };

  auto EmitTailCall = [&](unsigned Target) {
    BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
        .add(JTInst->getOperand(3 + 2 * Target));
  };

  std::function<void(unsigned, unsigned)> EmitBranchFunnel =
      [&](unsigned FirstTarget, unsigned NumTargets) {
    if (NumTargets == 1) {
      EmitTailCall(FirstTarget);
      return;
    }

    if (NumTargets == 2) {
      CmpTarget(FirstTarget + 1);
      EmitCondJumpTarget(X86::COND_B, FirstTarget);
      EmitTailCall(FirstTarget + 1);
      return;
    }

    if (NumTargets < 6) {
      CmpTarget(FirstTarget + 1);
      EmitCondJumpTarget(X86::COND_B, FirstTarget);
      EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
      EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
      return;
    }

    auto *ThenMBB = CreateMBB();
    CmpTarget(FirstTarget + (NumTargets / 2));
    EmitCondJump(X86::COND_B, ThenMBB);
    EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
    EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
                  NumTargets - (NumTargets / 2) - 1);

    MF->insert(InsPt, ThenMBB);
    MBB = ThenMBB;
    MBBI = MBB->end();
    EmitBranchFunnel(FirstTarget, NumTargets / 2);
  };

  EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
  for (auto P : TargetMBBs) {
    MF->insert(InsPt, P.first);
    BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
        .add(JTInst->getOperand(3 + 2 * P.second));
  }
  JTMBB->erase(JTInst);
}

/// If \p MBBI is a pseudo instruction, this method expands
/// it to the corresponding (sequence of) actual instruction(s).
/// \returns true if \p MBBI has been expanded.
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator MBBI) {
  MachineInstr &MI = *MBBI;
  unsigned Opcode = MI.getOpcode();
  DebugLoc DL = MBBI->getDebugLoc();
  switch (Opcode) {
  default:
    return false;
  case X86::TCRETURNdi:
  case X86::TCRETURNdicc:
  case X86::TCRETURNri:
  case X86::TCRETURNmi:
  case X86::TCRETURNdi64:
  case X86::TCRETURNdi64cc:
  case X86::TCRETURNri64:
  case X86::TCRETURNmi64: {
    bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
                                                         : 1);
    assert(StackAdjust.isImm() && "Expecting immediate value.");

    // Adjust stack pointer.
    int StackAdj = StackAdjust.getImm();
    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
    int Offset = 0;
    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");

    // Incoporate the retaddr area.
    Offset = StackAdj - MaxTCDelta;
    assert(Offset >= 0 && "Offset should never be negative");

    if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
      assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
    }

    if (Offset) {
      // Check for possible merge with preceding ADD instruction.
      Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
      X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
    }

    // Jump to label or value in register.
    bool IsWin64 = STI->isTargetWin64();
    if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
        Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
      unsigned Op;
      switch (Opcode) {
      case X86::TCRETURNdi:
        Op = X86::TAILJMPd;
        break;
      case X86::TCRETURNdicc:
        Op = X86::TAILJMPd_CC;
        break;
      case X86::TCRETURNdi64cc:
        assert(!MBB.getParent()->hasWinCFI() &&
               "Conditional tail calls confuse "
               "the Win64 unwinder.");
        Op = X86::TAILJMPd64_CC;
        break;
      default:
        // Note: Win64 uses REX prefixes indirect jumps out of functions, but
        // not direct ones.
        Op = X86::TAILJMPd64;
        break;
      }
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      if (JumpTarget.isGlobal()) {
        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
                             JumpTarget.getTargetFlags());
      } else {
        assert(JumpTarget.isSymbol());
        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
                              JumpTarget.getTargetFlags());
      }
      if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
        MIB.addImm(MBBI->getOperand(2).getImm());
      }

    } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
      unsigned Op = (Opcode == X86::TCRETURNmi)
                        ? X86::TAILJMPm
                        : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
        MIB.add(MBBI->getOperand(i));
    } else if (Opcode == X86::TCRETURNri64) {
      JumpTarget.setIsKill();
      BuildMI(MBB, MBBI, DL,
              TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
          .add(JumpTarget);
    } else {
      JumpTarget.setIsKill();
      BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
          .add(JumpTarget);
    }

    MachineInstr &NewMI = *std::prev(MBBI);
    NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
    MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);

    // Delete the pseudo instruction TCRETURN.
    MBB.erase(MBBI);

    return true;
  }
  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    MachineOperand &DestAddr = MBBI->getOperand(0);
    assert(DestAddr.isReg() && "Offset should be in register!");
    const bool Uses64BitFramePtr =
        STI->isTarget64BitLP64() || STI->isTargetNaCl64();
    Register StackPtr = TRI->getStackRegister();
    BuildMI(MBB, MBBI, DL,
            TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
        .addReg(DestAddr.getReg());
    // The EH_RETURN pseudo is really removed during the MC Lowering.
    return true;
  }
  case X86::IRET: {
    // Adjust stack to erase error code
    int64_t StackAdj = MBBI->getOperand(0).getImm();
    X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
    // Replace pseudo with machine iret
    BuildMI(MBB, MBBI, DL,
            TII->get(STI->is64Bit() ? X86::IRET64 : X86::IRET32));
    MBB.erase(MBBI);
    return true;
  }
  case X86::RET: {
    // Adjust stack to erase error code
    int64_t StackAdj = MBBI->getOperand(0).getImm();
    MachineInstrBuilder MIB;
    if (StackAdj == 0) {
      MIB = BuildMI(MBB, MBBI, DL,
                    TII->get(STI->is64Bit() ? X86::RETQ : X86::RETL));
    } else if (isUInt<16>(StackAdj)) {
      MIB = BuildMI(MBB, MBBI, DL,
                    TII->get(STI->is64Bit() ? X86::RETIQ : X86::RETIL))
                .addImm(StackAdj);
    } else {
      assert(!STI->is64Bit() &&
             "shouldn't need to do this for x86_64 targets!");
      // A ret can only handle immediates as big as 2**16-1.  If we need to pop
      // off bytes before the return address, we must do it manually.
      BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
      X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
      BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
      MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RETL));
    }
    for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
      MIB.add(MBBI->getOperand(I));
    MBB.erase(MBBI);
    return true;
  }
  case X86::EH_RESTORE: {
    // Restore ESP and EBP, and optionally ESI if required.
    bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(
        MBB.getParent()->getFunction().getPersonalityFn()));
    X86FL->restoreWin32EHStackPointers(MBB, MBBI, DL, /*RestoreSP=*/IsSEH);
    MBBI->eraseFromParent();
    return true;
  }
  case X86::LCMPXCHG8B_SAVE_EBX:
  case X86::LCMPXCHG16B_SAVE_RBX: {
    // Perform the following transformation.
    // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
    // =>
    // [E|R]BX = InArg
    // actualcmpxchg Addr
    // [E|R]BX = SaveRbx
    const MachineOperand &InArg = MBBI->getOperand(6);
    Register SaveRbx = MBBI->getOperand(7).getReg();

    unsigned ActualInArg =
        Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
    // Copy the input argument of the pseudo into the argument of the
    // actual instruction.
    TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, InArg.getReg(),
                     InArg.isKill());
    // Create the actual instruction.
    unsigned ActualOpc =
        Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::LCMPXCHG8B : X86::LCMPXCHG16B;
    MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(ActualOpc));
    // Copy the operands related to the address.
    for (unsigned Idx = 1; Idx < 6; ++Idx)
      NewInstr->addOperand(MBBI->getOperand(Idx));
    // Finally, restore the value of RBX.
    TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, SaveRbx,
                     /*SrcIsKill*/ true);

    // Delete the pseudo.
    MBBI->eraseFromParent();
    return true;
  }
  case TargetOpcode::ICALL_BRANCH_FUNNEL:
    ExpandICallBranchFunnel(&MBB, MBBI);
    return true;
  }
  llvm_unreachable("Previous switch has a fallthrough?");
}

/// Expand all pseudo instructions contained in \p MBB.
/// \returns true if any expansion occurred for \p MBB.
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
  bool Modified = false;

  // MBBI may be invalidated by the expansion.
  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
  while (MBBI != E) {
    MachineBasicBlock::iterator NMBBI = std::next(MBBI);
    Modified |= ExpandMI(MBB, MBBI);
    MBBI = NMBBI;
  }

  return Modified;
}

bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
  STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  X86FI = MF.getInfo<X86MachineFunctionInfo>();
  X86FL = STI->getFrameLowering();

  bool Modified = false;
  for (MachineBasicBlock &MBB : MF)
    Modified |= ExpandMBB(MBB);
  return Modified;
}

/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createX86ExpandPseudoPass() {
  return new X86ExpandPseudo();
}