reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines the pass that looks through the machine instructions
/// late in the compilation, and finds byte or word instructions that
/// can be profitably replaced with 32 bit instructions that give equivalent
/// results for the bits of the results that are used. There are two possible
/// reasons to do this.
///
/// One reason is to avoid false-dependences on the upper portions
/// of the registers.  Only instructions that have a destination register
/// which is not in any of the source registers can be affected by this.
/// Any instruction where one of the source registers is also the destination
/// register is unaffected, because it has a true dependence on the source
/// register already.  So, this consideration primarily affects load
/// instructions and register-to-register moves.  It would
/// seem like cmov(s) would also be affected, but because of the way cmov is
/// really implemented by most machines as reading both the destination and
/// and source registers, and then "merging" the two based on a condition,
/// it really already should be considered as having a true dependence on the
/// destination register as well.
///
/// The other reason to do this is for potential code size savings.  Word
/// operations need an extra override byte compared to their 32 bit
/// versions. So this can convert many word operations to their larger
/// size, saving a byte in encoding. This could introduce partial register
/// dependences where none existed however.  As an example take:
///   orw  ax, $0x1000
///   addw ax, $3
/// now if this were to get transformed into
///   orw  ax, $1000
///   addl eax, $3
/// because the addl encodes shorter than the addw, this would introduce
/// a use of a register that was only partially written earlier.  On older
/// Intel processors this can be quite a performance penalty, so this should
/// probably only be done when it can be proven that a new partial dependence
/// wouldn't be created, or when your know a newer processor is being
/// targeted, or when optimizing for minimum code size.
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
#define FIXUPBW_NAME "x86-fixup-bw-insts"

#define DEBUG_TYPE FIXUPBW_NAME

// Option to allow this optimization pass to have fine-grained control.
static cl::opt<bool>
    FixupBWInsts("fixup-byte-word-insts",
                 cl::desc("Change byte and word instructions to larger sizes"),
                 cl::init(true), cl::Hidden);

namespace {
class FixupBWInstPass : public MachineFunctionPass {
  /// Loop over all of the instructions in the basic block replacing applicable
  /// byte or word instructions with better alternatives.
  void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);

  /// This sets the \p SuperDestReg to the 32 bit super reg of the original
  /// destination register of the MachineInstr passed in. It returns true if
  /// that super register is dead just prior to \p OrigMI, and false if not.
  bool getSuperRegDestIfDead(MachineInstr *OrigMI,
                             Register &SuperDestReg) const;

  /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
  /// register if it is safe to do so.  Return the replacement instruction if
  /// OK, otherwise return nullptr.
  MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;

  /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
  /// safe to do so.  Return the replacement instruction if OK, otherwise return
  /// nullptr.
  MachineInstr *tryReplaceCopy(MachineInstr *MI) const;

  /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
  /// register if it is safe to do so.  Return the replacement instruction if
  /// OK, otherwise return nullptr.
  MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
                                 MachineInstr *MI) const;

  // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
  // possible.  Return the replacement instruction if OK, return nullptr
  // otherwise.
  MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;

public:
  static char ID;

  StringRef getPassName() const override { return FIXUPBW_DESC; }

  FixupBWInstPass() : MachineFunctionPass(ID) { }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
                                       // guide some heuristics.
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  /// Loop over all of the basic blocks, replacing byte and word instructions by
  /// equivalent 32 bit instructions where performance or code size can be
  /// improved.
  bool runOnMachineFunction(MachineFunction &MF) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  MachineFunction *MF;

  /// Machine instruction info used throughout the class.
  const X86InstrInfo *TII;

  /// Local member for function's OptForSize attribute.
  bool OptForSize;

  /// Machine loop info used for guiding some heruistics.
  MachineLoopInfo *MLI;

  /// Register Liveness information after the current instruction.
  LivePhysRegs LiveRegs;
};
char FixupBWInstPass::ID = 0;
}

INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)

FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }

bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
  if (!FixupBWInsts || skipFunction(MF.getFunction()))
    return false;

  this->MF = &MF;
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  OptForSize = MF.getFunction().hasOptSize();
  MLI = &getAnalysis<MachineLoopInfo>();
  LiveRegs.init(TII->getRegisterInfo());

  LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);

  // Process all basic blocks.
  for (auto &MBB : MF)
    processBasicBlock(MF, MBB);

  LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);

  return true;
}

/// Check if after \p OrigMI the only portion of super register
/// of the destination register of \p OrigMI that is alive is that
/// destination register.
///
/// If so, return that super register in \p SuperDestReg.
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
                                            Register &SuperDestReg) const {
  auto *TRI = &TII->getRegisterInfo();

  Register OrigDestReg = OrigMI->getOperand(0).getReg();
  SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);

  const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);

  // Make sure that the sub-register that this instruction has as its
  // destination is the lowest order sub-register of the super-register.
  // If it isn't, then the register isn't really dead even if the
  // super-register is considered dead.
  if (SubRegIdx == X86::sub_8bit_hi)
    return false;

  // If neither the destination-super register nor any applicable subregisters
  // are live after this instruction, then the super register is safe to use.
  if (!LiveRegs.contains(SuperDestReg)) {
    // If the original destination register was not the low 8-bit subregister
    // then the super register check is sufficient.
    if (SubRegIdx != X86::sub_8bit)
      return true;
    // If the original destination register was the low 8-bit subregister and
    // we also need to check the 16-bit subregister and the high 8-bit
    // subregister.
    if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
        !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
                                                  /*High=*/true)))
      return true;
    // Otherwise, we have a little more checking to do.
  }

  // If we get here, the super-register destination (or some part of it) is
  // marked as live after the original instruction.
  //
  // The X86 backend does not have subregister liveness tracking enabled,
  // so liveness information might be overly conservative. Specifically, the
  // super register might be marked as live because it is implicitly defined
  // by the instruction we are examining.
  //
  // However, for some specific instructions (this pass only cares about MOVs)
  // we can produce more precise results by analysing that MOV's operands.
  //
  // Indeed, if super-register is not live before the mov it means that it
  // was originally <read-undef> and so we are free to modify these
  // undef upper bits. That may happen in case where the use is in another MBB
  // and the vreg/physreg corresponding to the move has higher width than
  // necessary (e.g. due to register coalescing with a "truncate" copy).
  // So, we would like to handle patterns like this:
  //
  //   %bb.2: derived from LLVM BB %if.then
  //   Live Ins: %rdi
  //   Predecessors according to CFG: %bb.0
  //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
  //                                 ; No implicit %eax
  //   Successors according to CFG: %bb.3(?%)
  //
  //   %bb.3: derived from LLVM BB %if.end
  //   Live Ins: %eax                            Only %ax is actually live
  //   Predecessors according to CFG: %bb.2 %bb.1
  //   %ax = KILL %ax, implicit killed %eax
  //   RET 0, %ax
  unsigned Opc = OrigMI->getOpcode(); (void)Opc;
  // These are the opcodes currently known to work with the code below, if
  // something // else will be added we need to ensure that new opcode has the
  // same properties.
  if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
      Opc != X86::MOV16rr)
    return false;

  bool IsDefined = false;
  for (auto &MO: OrigMI->implicit_operands()) {
    if (!MO.isReg())
      continue;

    assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");

    if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
      IsDefined = true;

    // If MO is a use of any part of the destination register but is not equal
    // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
    // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
    // %eax, or %rax will prevent us from using the %eax register.
    if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
        TRI->regsOverlap(SuperDestReg, MO.getReg()))
      return false;
  }
  // Reg is not Imp-def'ed -> it's live both before/after the instruction.
  if (!IsDefined)
    return false;

  // Otherwise, the Reg is not live before the MI and the MOV can't
  // make it really live, so it's in fact dead even after the MI.
  return true;
}

MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
                                              MachineInstr *MI) const {
  Register NewDestReg;

  // We are going to try to rewrite this load to a larger zero-extending
  // load.  This is safe if all portions of the 32 bit super-register
  // of the original destination register, except for the original destination
  // register are dead. getSuperRegDestIfDead checks that.
  if (!getSuperRegDestIfDead(MI, NewDestReg))
    return nullptr;

  // Safe to change the instruction.
  MachineInstrBuilder MIB =
      BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);

  unsigned NumArgs = MI->getNumOperands();
  for (unsigned i = 1; i < NumArgs; ++i)
    MIB.add(MI->getOperand(i));

  MIB.setMemRefs(MI->memoperands());

  return MIB;
}

MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
  assert(MI->getNumExplicitOperands() == 2);
  auto &OldDest = MI->getOperand(0);
  auto &OldSrc = MI->getOperand(1);

  Register NewDestReg;
  if (!getSuperRegDestIfDead(MI, NewDestReg))
    return nullptr;

  Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);

  // This is only correct if we access the same subregister index: otherwise,
  // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
  auto *TRI = &TII->getRegisterInfo();
  if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
      TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
    return nullptr;

  // Safe to change the instruction.
  // Don't set src flags, as we don't know if we're also killing the superreg.
  // However, the superregister might not be defined; make it explicit that
  // we don't care about the higher bits by reading it as Undef, and adding
  // an imp-use on the original subregister.
  MachineInstrBuilder MIB =
      BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
          .addReg(NewSrcReg, RegState::Undef)
          .addReg(OldSrc.getReg(), RegState::Implicit);

  // Drop imp-defs/uses that would be redundant with the new def/use.
  for (auto &Op : MI->implicit_operands())
    if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
      MIB.add(Op);

  return MIB;
}

MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
                                                MachineInstr *MI) const {
  Register NewDestReg;
  if (!getSuperRegDestIfDead(MI, NewDestReg))
    return nullptr;

  // Don't interfere with formation of CBW instructions which should be a
  // shorter encoding than even the MOVSX32rr8. It's also immunte to partial
  // merge issues on Intel CPUs.
  if (MI->getOpcode() == X86::MOVSX16rr8 &&
      MI->getOperand(0).getReg() == X86::AX &&
      MI->getOperand(1).getReg() == X86::AL)
    return nullptr;

  // Safe to change the instruction.
  MachineInstrBuilder MIB =
      BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);

  unsigned NumArgs = MI->getNumOperands();
  for (unsigned i = 1; i < NumArgs; ++i)
    MIB.add(MI->getOperand(i));

  MIB.setMemRefs(MI->memoperands());

  return MIB;
}

MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
                                               MachineBasicBlock &MBB) const {
  // See if this is an instruction of the type we are currently looking for.
  switch (MI->getOpcode()) {

  case X86::MOV8rm:
    // Only replace 8 bit loads with the zero extending versions if
    // in an inner most loop and not optimizing for size. This takes
    // an extra byte to encode, and provides limited performance upside.
    if (MachineLoop *ML = MLI->getLoopFor(&MBB))
      if (ML->begin() == ML->end() && !OptForSize)
        return tryReplaceLoad(X86::MOVZX32rm8, MI);
    break;

  case X86::MOV16rm:
    // Always try to replace 16 bit load with 32 bit zero extending.
    // Code size is the same, and there is sometimes a perf advantage
    // from eliminating a false dependence on the upper portion of
    // the register.
    return tryReplaceLoad(X86::MOVZX32rm16, MI);

  case X86::MOV8rr:
  case X86::MOV16rr:
    // Always try to replace 8/16 bit copies with a 32 bit copy.
    // Code size is either less (16) or equal (8), and there is sometimes a
    // perf advantage from eliminating a false dependence on the upper portion
    // of the register.
    return tryReplaceCopy(MI);

  case X86::MOVSX16rr8:
    return tryReplaceExtend(X86::MOVSX32rr8, MI);
  case X86::MOVSX16rm8:
    return tryReplaceExtend(X86::MOVSX32rm8, MI);
  case X86::MOVZX16rr8:
    return tryReplaceExtend(X86::MOVZX32rr8, MI);
  case X86::MOVZX16rm8:
    return tryReplaceExtend(X86::MOVZX32rm8, MI);

  default:
    // nothing to do here.
    break;
  }

  return nullptr;
}

void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
                                        MachineBasicBlock &MBB) {

  // This algorithm doesn't delete the instructions it is replacing
  // right away.  By leaving the existing instructions in place, the
  // register liveness information doesn't change, and this makes the
  // analysis that goes on be better than if the replaced instructions
  // were immediately removed.
  //
  // This algorithm always creates a replacement instruction
  // and notes that and the original in a data structure, until the
  // whole BB has been analyzed.  This keeps the replacement instructions
  // from making it seem as if the larger register might be live.
  SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;

  // Start computing liveness for this block. We iterate from the end to be able
  // to update this for each instruction.
  LiveRegs.clear();
  // We run after PEI, so we need to AddPristinesAndCSRs.
  LiveRegs.addLiveOuts(MBB);

  for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
    MachineInstr *MI = &*I;

    if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
      MIReplacements.push_back(std::make_pair(MI, NewMI));

    // We're done with this instruction, update liveness for the next one.
    LiveRegs.stepBackward(*MI);
  }

  while (!MIReplacements.empty()) {
    MachineInstr *MI = MIReplacements.back().first;
    MachineInstr *NewMI = MIReplacements.back().second;
    MIReplacements.pop_back();
    MBB.insert(MI, NewMI);
    MBB.erase(MI);
  }
}