1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
| //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines the pass that looks through the machine instructions
/// late in the compilation, and finds byte or word instructions that
/// can be profitably replaced with 32 bit instructions that give equivalent
/// results for the bits of the results that are used. There are two possible
/// reasons to do this.
///
/// One reason is to avoid false-dependences on the upper portions
/// of the registers. Only instructions that have a destination register
/// which is not in any of the source registers can be affected by this.
/// Any instruction where one of the source registers is also the destination
/// register is unaffected, because it has a true dependence on the source
/// register already. So, this consideration primarily affects load
/// instructions and register-to-register moves. It would
/// seem like cmov(s) would also be affected, but because of the way cmov is
/// really implemented by most machines as reading both the destination and
/// and source registers, and then "merging" the two based on a condition,
/// it really already should be considered as having a true dependence on the
/// destination register as well.
///
/// The other reason to do this is for potential code size savings. Word
/// operations need an extra override byte compared to their 32 bit
/// versions. So this can convert many word operations to their larger
/// size, saving a byte in encoding. This could introduce partial register
/// dependences where none existed however. As an example take:
/// orw ax, $0x1000
/// addw ax, $3
/// now if this were to get transformed into
/// orw ax, $1000
/// addl eax, $3
/// because the addl encodes shorter than the addw, this would introduce
/// a use of a register that was only partially written earlier. On older
/// Intel processors this can be quite a performance penalty, so this should
/// probably only be done when it can be proven that a new partial dependence
/// wouldn't be created, or when your know a newer processor is being
/// targeted, or when optimizing for minimum code size.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
#define FIXUPBW_NAME "x86-fixup-bw-insts"
#define DEBUG_TYPE FIXUPBW_NAME
// Option to allow this optimization pass to have fine-grained control.
static cl::opt<bool>
FixupBWInsts("fixup-byte-word-insts",
cl::desc("Change byte and word instructions to larger sizes"),
cl::init(true), cl::Hidden);
namespace {
class FixupBWInstPass : public MachineFunctionPass {
/// Loop over all of the instructions in the basic block replacing applicable
/// byte or word instructions with better alternatives.
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
/// This sets the \p SuperDestReg to the 32 bit super reg of the original
/// destination register of the MachineInstr passed in. It returns true if
/// that super register is dead just prior to \p OrigMI, and false if not.
bool getSuperRegDestIfDead(MachineInstr *OrigMI,
Register &SuperDestReg) const;
/// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
/// register if it is safe to do so. Return the replacement instruction if
/// OK, otherwise return nullptr.
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
/// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
/// safe to do so. Return the replacement instruction if OK, otherwise return
/// nullptr.
MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
/// Change the MachineInstr \p MI into the equivalent extend to 32 bit
/// register if it is safe to do so. Return the replacement instruction if
/// OK, otherwise return nullptr.
MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
MachineInstr *MI) const;
// Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
// possible. Return the replacement instruction if OK, return nullptr
// otherwise.
MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
public:
static char ID;
StringRef getPassName() const override { return FIXUPBW_DESC; }
FixupBWInstPass() : MachineFunctionPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
// guide some heuristics.
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Loop over all of the basic blocks, replacing byte and word instructions by
/// equivalent 32 bit instructions where performance or code size can be
/// improved.
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
MachineFunction *MF;
/// Machine instruction info used throughout the class.
const X86InstrInfo *TII;
/// Local member for function's OptForSize attribute.
bool OptForSize;
/// Machine loop info used for guiding some heruistics.
MachineLoopInfo *MLI;
/// Register Liveness information after the current instruction.
LivePhysRegs LiveRegs;
};
char FixupBWInstPass::ID = 0;
}
INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
if (!FixupBWInsts || skipFunction(MF.getFunction()))
return false;
this->MF = &MF;
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
OptForSize = MF.getFunction().hasOptSize();
MLI = &getAnalysis<MachineLoopInfo>();
LiveRegs.init(TII->getRegisterInfo());
LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
// Process all basic blocks.
for (auto &MBB : MF)
processBasicBlock(MF, MBB);
LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
return true;
}
/// Check if after \p OrigMI the only portion of super register
/// of the destination register of \p OrigMI that is alive is that
/// destination register.
///
/// If so, return that super register in \p SuperDestReg.
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
Register &SuperDestReg) const {
auto *TRI = &TII->getRegisterInfo();
Register OrigDestReg = OrigMI->getOperand(0).getReg();
SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
// Make sure that the sub-register that this instruction has as its
// destination is the lowest order sub-register of the super-register.
// If it isn't, then the register isn't really dead even if the
// super-register is considered dead.
if (SubRegIdx == X86::sub_8bit_hi)
return false;
// If neither the destination-super register nor any applicable subregisters
// are live after this instruction, then the super register is safe to use.
if (!LiveRegs.contains(SuperDestReg)) {
// If the original destination register was not the low 8-bit subregister
// then the super register check is sufficient.
if (SubRegIdx != X86::sub_8bit)
return true;
// If the original destination register was the low 8-bit subregister and
// we also need to check the 16-bit subregister and the high 8-bit
// subregister.
if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
!LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
/*High=*/true)))
return true;
// Otherwise, we have a little more checking to do.
}
// If we get here, the super-register destination (or some part of it) is
// marked as live after the original instruction.
//
// The X86 backend does not have subregister liveness tracking enabled,
// so liveness information might be overly conservative. Specifically, the
// super register might be marked as live because it is implicitly defined
// by the instruction we are examining.
//
// However, for some specific instructions (this pass only cares about MOVs)
// we can produce more precise results by analysing that MOV's operands.
//
// Indeed, if super-register is not live before the mov it means that it
// was originally <read-undef> and so we are free to modify these
// undef upper bits. That may happen in case where the use is in another MBB
// and the vreg/physreg corresponding to the move has higher width than
// necessary (e.g. due to register coalescing with a "truncate" copy).
// So, we would like to handle patterns like this:
//
// %bb.2: derived from LLVM BB %if.then
// Live Ins: %rdi
// Predecessors according to CFG: %bb.0
// %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
// ; No implicit %eax
// Successors according to CFG: %bb.3(?%)
//
// %bb.3: derived from LLVM BB %if.end
// Live Ins: %eax Only %ax is actually live
// Predecessors according to CFG: %bb.2 %bb.1
// %ax = KILL %ax, implicit killed %eax
// RET 0, %ax
unsigned Opc = OrigMI->getOpcode(); (void)Opc;
// These are the opcodes currently known to work with the code below, if
// something // else will be added we need to ensure that new opcode has the
// same properties.
if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
Opc != X86::MOV16rr)
return false;
bool IsDefined = false;
for (auto &MO: OrigMI->implicit_operands()) {
if (!MO.isReg())
continue;
assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
IsDefined = true;
// If MO is a use of any part of the destination register but is not equal
// to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
// For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
// %eax, or %rax will prevent us from using the %eax register.
if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
TRI->regsOverlap(SuperDestReg, MO.getReg()))
return false;
}
// Reg is not Imp-def'ed -> it's live both before/after the instruction.
if (!IsDefined)
return false;
// Otherwise, the Reg is not live before the MI and the MOV can't
// make it really live, so it's in fact dead even after the MI.
return true;
}
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
MachineInstr *MI) const {
Register NewDestReg;
// We are going to try to rewrite this load to a larger zero-extending
// load. This is safe if all portions of the 32 bit super-register
// of the original destination register, except for the original destination
// register are dead. getSuperRegDestIfDead checks that.
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
// Safe to change the instruction.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
unsigned NumArgs = MI->getNumOperands();
for (unsigned i = 1; i < NumArgs; ++i)
MIB.add(MI->getOperand(i));
MIB.setMemRefs(MI->memoperands());
return MIB;
}
MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
assert(MI->getNumExplicitOperands() == 2);
auto &OldDest = MI->getOperand(0);
auto &OldSrc = MI->getOperand(1);
Register NewDestReg;
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
// This is only correct if we access the same subregister index: otherwise,
// we could try to replace "movb %ah, %al" with "movl %eax, %eax".
auto *TRI = &TII->getRegisterInfo();
if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
return nullptr;
// Safe to change the instruction.
// Don't set src flags, as we don't know if we're also killing the superreg.
// However, the superregister might not be defined; make it explicit that
// we don't care about the higher bits by reading it as Undef, and adding
// an imp-use on the original subregister.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
.addReg(NewSrcReg, RegState::Undef)
.addReg(OldSrc.getReg(), RegState::Implicit);
// Drop imp-defs/uses that would be redundant with the new def/use.
for (auto &Op : MI->implicit_operands())
if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
MIB.add(Op);
return MIB;
}
MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
MachineInstr *MI) const {
Register NewDestReg;
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
// Don't interfere with formation of CBW instructions which should be a
// shorter encoding than even the MOVSX32rr8. It's also immunte to partial
// merge issues on Intel CPUs.
if (MI->getOpcode() == X86::MOVSX16rr8 &&
MI->getOperand(0).getReg() == X86::AX &&
MI->getOperand(1).getReg() == X86::AL)
return nullptr;
// Safe to change the instruction.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
unsigned NumArgs = MI->getNumOperands();
for (unsigned i = 1; i < NumArgs; ++i)
MIB.add(MI->getOperand(i));
MIB.setMemRefs(MI->memoperands());
return MIB;
}
MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
MachineBasicBlock &MBB) const {
// See if this is an instruction of the type we are currently looking for.
switch (MI->getOpcode()) {
case X86::MOV8rm:
// Only replace 8 bit loads with the zero extending versions if
// in an inner most loop and not optimizing for size. This takes
// an extra byte to encode, and provides limited performance upside.
if (MachineLoop *ML = MLI->getLoopFor(&MBB))
if (ML->begin() == ML->end() && !OptForSize)
return tryReplaceLoad(X86::MOVZX32rm8, MI);
break;
case X86::MOV16rm:
// Always try to replace 16 bit load with 32 bit zero extending.
// Code size is the same, and there is sometimes a perf advantage
// from eliminating a false dependence on the upper portion of
// the register.
return tryReplaceLoad(X86::MOVZX32rm16, MI);
case X86::MOV8rr:
case X86::MOV16rr:
// Always try to replace 8/16 bit copies with a 32 bit copy.
// Code size is either less (16) or equal (8), and there is sometimes a
// perf advantage from eliminating a false dependence on the upper portion
// of the register.
return tryReplaceCopy(MI);
case X86::MOVSX16rr8:
return tryReplaceExtend(X86::MOVSX32rr8, MI);
case X86::MOVSX16rm8:
return tryReplaceExtend(X86::MOVSX32rm8, MI);
case X86::MOVZX16rr8:
return tryReplaceExtend(X86::MOVZX32rr8, MI);
case X86::MOVZX16rm8:
return tryReplaceExtend(X86::MOVZX32rm8, MI);
default:
// nothing to do here.
break;
}
return nullptr;
}
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
MachineBasicBlock &MBB) {
// This algorithm doesn't delete the instructions it is replacing
// right away. By leaving the existing instructions in place, the
// register liveness information doesn't change, and this makes the
// analysis that goes on be better than if the replaced instructions
// were immediately removed.
//
// This algorithm always creates a replacement instruction
// and notes that and the original in a data structure, until the
// whole BB has been analyzed. This keeps the replacement instructions
// from making it seem as if the larger register might be live.
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
// Start computing liveness for this block. We iterate from the end to be able
// to update this for each instruction.
LiveRegs.clear();
// We run after PEI, so we need to AddPristinesAndCSRs.
LiveRegs.addLiveOuts(MBB);
for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
MachineInstr *MI = &*I;
if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
MIReplacements.push_back(std::make_pair(MI, NewMI));
// We're done with this instruction, update liveness for the next one.
LiveRegs.stepBackward(*MI);
}
while (!MIReplacements.empty()) {
MachineInstr *MI = MIReplacements.back().first;
MachineInstr *NewMI = MIReplacements.back().second;
MIReplacements.pop_back();
MBB.insert(MI, NewMI);
MBB.erase(MI);
}
}
|