1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
| //===- X86MacroFusion.cpp - X86 Macro Fusion ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the X86 implementation of the DAG scheduling
/// mutation to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
using namespace llvm;
namespace {
// The classification for the first instruction.
enum class FirstInstrKind { Test, Cmp, And, ALU, IncDec, Invalid };
// The classification for the second instruction (jump).
enum class JumpKind {
// JE, JL, JG and variants.
ELG,
// JA, JB and variants.
AB,
// JS, JP, JO and variants.
SPO,
// Not a fusable jump.
Invalid,
};
} // namespace
static FirstInstrKind classifyFirst(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return FirstInstrKind::Invalid;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
case X86::TEST8ri:
case X86::TEST16ri:
case X86::TEST32ri:
case X86::TEST64ri32:
case X86::TEST8mr:
case X86::TEST16mr:
case X86::TEST32mr:
case X86::TEST64mr:
return FirstInstrKind::Test;
case X86::AND16ri:
case X86::AND16ri8:
case X86::AND16rm:
case X86::AND16rr:
case X86::AND32ri:
case X86::AND32ri8:
case X86::AND32rm:
case X86::AND32rr:
case X86::AND64ri32:
case X86::AND64ri8:
case X86::AND64rm:
case X86::AND64rr:
case X86::AND8ri:
case X86::AND8rm:
case X86::AND8rr:
return FirstInstrKind::And;
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP16rm:
case X86::CMP16rr:
case X86::CMP16mr:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP32rm:
case X86::CMP32rr:
case X86::CMP32mr:
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP64rm:
case X86::CMP64rr:
case X86::CMP64mr:
case X86::CMP8ri:
case X86::CMP8rm:
case X86::CMP8rr:
case X86::CMP8mr:
return FirstInstrKind::Cmp;
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri8_DB:
case X86::ADD16ri_DB:
case X86::ADD16rm:
case X86::ADD16rr:
case X86::ADD16rr_DB:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri8_DB:
case X86::ADD32ri_DB:
case X86::ADD32rm:
case X86::ADD32rr:
case X86::ADD32rr_DB:
case X86::ADD64ri32:
case X86::ADD64ri32_DB:
case X86::ADD64ri8:
case X86::ADD64ri8_DB:
case X86::ADD64rm:
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD8ri:
case X86::ADD8ri_DB:
case X86::ADD8rm:
case X86::ADD8rr:
case X86::ADD8rr_DB:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB16rm:
case X86::SUB16rr:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB32rm:
case X86::SUB32rr:
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB64rm:
case X86::SUB64rr:
case X86::SUB8ri:
case X86::SUB8rm:
case X86::SUB8rr:
return FirstInstrKind::ALU;
case X86::INC16r:
case X86::INC32r:
case X86::INC64r:
case X86::INC8r:
case X86::DEC16r:
case X86::DEC32r:
case X86::DEC64r:
case X86::DEC8r:
return FirstInstrKind::IncDec;
}
}
static JumpKind classifySecond(const MachineInstr &MI) {
X86::CondCode CC = X86::getCondFromBranch(MI);
if (CC == X86::COND_INVALID)
return JumpKind::Invalid;
switch (CC) {
default:
return JumpKind::Invalid;
case X86::COND_E:
case X86::COND_NE:
case X86::COND_L:
case X86::COND_LE:
case X86::COND_G:
case X86::COND_GE:
return JumpKind::ELG;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_A:
case X86::COND_AE:
return JumpKind::AB;
case X86::COND_S:
case X86::COND_NS:
case X86::COND_P:
case X86::COND_NP:
case X86::COND_O:
case X86::COND_NO:
return JumpKind::SPO;
}
}
/// Check if the instr pair, FirstMI and SecondMI, should be fused
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
const X86Subtarget &ST = static_cast<const X86Subtarget &>(TSI);
// Check if this processor supports any kind of fusion.
if (!(ST.hasBranchFusion() || ST.hasMacroFusion()))
return false;
const JumpKind BranchKind = classifySecond(SecondMI);
if (BranchKind == JumpKind::Invalid)
return false; // Second cannot be fused with anything.
if (FirstMI == nullptr)
return true; // We're only checking whether Second can be fused at all.
const FirstInstrKind TestKind = classifyFirst(*FirstMI);
if (ST.hasBranchFusion()) {
// Branch fusion can merge CMP and TEST with all conditional jumps.
return (TestKind == FirstInstrKind::Cmp ||
TestKind == FirstInstrKind::Test);
}
if (ST.hasMacroFusion()) {
// Macro Fusion rules are a bit more complex. See Agner Fog's
// Microarchitecture table 9.2 "Instruction Fusion".
switch (TestKind) {
case FirstInstrKind::Test:
case FirstInstrKind::And:
return true;
case FirstInstrKind::Cmp:
case FirstInstrKind::ALU:
return BranchKind == JumpKind::ELG || BranchKind == JumpKind::AB;
case FirstInstrKind::IncDec:
return BranchKind == JumpKind::ELG;
case FirstInstrKind::Invalid:
return false;
}
}
llvm_unreachable("unknown branch fusion type");
}
namespace llvm {
std::unique_ptr<ScheduleDAGMutation>
createX86MacroFusionDAGMutation () {
return createBranchMacroFusionDAGMutation(shouldScheduleAdjacent);
}
} // end namespace llvm
|