reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
//===- InstCombineShifts.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitShl, visitLShr, and visitAShr functions.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

// Given pattern:
//   (x shiftopcode Q) shiftopcode K
// we should rewrite it as
//   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x)
// This is valid for any shift, but they must be identical.
//
// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
// pattern has any 2 right-shifts that sum to 1 less than original bit width.
Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
    BinaryOperator *Sh0, const SimplifyQuery &SQ,
    bool AnalyzeForSignBitExtraction) {
  // Look for a shift of some instruction, ignore zext of shift amount if any.
  Instruction *Sh0Op0;
  Value *ShAmt0;
  if (!match(Sh0,
             m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
    return nullptr;

  // If there is a truncation between the two shifts, we must make note of it
  // and look through it. The truncation imposes additional constraints on the
  // transform.
  Instruction *Sh1;
  Value *Trunc = nullptr;
  match(Sh0Op0,
        m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
                    m_Instruction(Sh1)));

  // Inner shift: (x shiftopcode ShAmt1)
  // Like with other shift, ignore zext of shift amount if any.
  Value *X, *ShAmt1;
  if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
    return nullptr;

  // We have two shift amounts from two different shifts. The types of those
  // shift amounts may not match. If that's the case let's bailout now..
  if (ShAmt0->getType() != ShAmt1->getType())
    return nullptr;

  // We are only looking for signbit extraction if we have two right shifts.
  bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
                           match(Sh1, m_Shr(m_Value(), m_Value()));
  // ... and if it's not two right-shifts, we know the answer already.
  if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
    return nullptr;

  // The shift opcodes must be identical, unless we are just checking whether
  // this pattern can be interpreted as a sign-bit-extraction.
  Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
  bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
  if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
    return nullptr;

  // If we saw truncation, we'll need to produce extra instruction,
  // and for that one of the operands of the shift must be one-use,
  // unless of course we don't actually plan to produce any instructions here.
  if (Trunc && !AnalyzeForSignBitExtraction &&
      !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
    return nullptr;

  // Can we fold (ShAmt0+ShAmt1) ?
  auto *NewShAmt = dyn_cast_or_null<Constant>(
      SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
                      SQ.getWithInstruction(Sh0)));
  if (!NewShAmt)
    return nullptr; // Did not simplify.
  unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
  unsigned XBitWidth = X->getType()->getScalarSizeInBits();
  // Is the new shift amount smaller than the bit width of inner/new shift?
  if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
                                          APInt(NewShAmtBitWidth, XBitWidth))))
    return nullptr; // FIXME: could perform constant-folding.

  // If there was a truncation, and we have a right-shift, we can only fold if
  // we are left with the original sign bit. Likewise, if we were just checking
  // that this is a sighbit extraction, this is the place to check it.
  // FIXME: zero shift amount is also legal here, but we can't *easily* check
  // more than one predicate so it's not really worth it.
  if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
    // If it's not a sign bit extraction, then we're done.
    if (!match(NewShAmt,
               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
                                  APInt(NewShAmtBitWidth, XBitWidth - 1))))
      return nullptr;
    // If it is, and that was the question, return the base value.
    if (AnalyzeForSignBitExtraction)
      return X;
  }

  assert(IdenticalShOpcodes && "Should not get here with different shifts.");

  // All good, we can do this fold.
  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());

  BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);

  // The flags can only be propagated if there wasn't a trunc.
  if (!Trunc) {
    // If the pattern did not involve trunc, and both of the original shifts
    // had the same flag set, preserve the flag.
    if (ShiftOpcode == Instruction::BinaryOps::Shl) {
      NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
                                     Sh1->hasNoUnsignedWrap());
      NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
                                   Sh1->hasNoSignedWrap());
    } else {
      NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
    }
  }

  Instruction *Ret = NewShift;
  if (Trunc) {
    Builder.Insert(NewShift);
    Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
  }

  return Ret;
}

// Try to replace `undef` constants in C with Replacement.
static Constant *replaceUndefsWith(Constant *C, Constant *Replacement) {
  if (C && match(C, m_Undef()))
    return Replacement;

  if (auto *CV = dyn_cast<ConstantVector>(C)) {
    llvm::SmallVector<Constant *, 32> NewOps(CV->getNumOperands());
    for (unsigned i = 0, NumElts = NewOps.size(); i != NumElts; ++i) {
      Constant *EltC = CV->getOperand(i);
      NewOps[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
    }
    return ConstantVector::get(NewOps);
  }

  // Don't know how to deal with this constant.
  return C;
}

// If we have some pattern that leaves only some low bits set, and then performs
// left-shift of those bits, if none of the bits that are left after the final
// shift are modified by the mask, we can omit the mask.
//
// There are many variants to this pattern:
//   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
//   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
//   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt
//   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
//   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
//   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
// All these patterns can be simplified to just:
//   x << ShiftShAmt
// iff:
//   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
//   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
static Instruction *
dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
                                     const SimplifyQuery &Q,
                                     InstCombiner::BuilderTy &Builder) {
  assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
         "The input must be 'shl'!");

  Value *Masked, *ShiftShAmt;
  match(OuterShift, m_Shift(m_Value(Masked), m_Value(ShiftShAmt)));

  Type *NarrowestTy = OuterShift->getType();
  Type *WidestTy = Masked->getType();
  // The mask must be computed in a type twice as wide to ensure
  // that no bits are lost if the sum-of-shifts is wider than the base type.
  Type *ExtendedTy = WidestTy->getExtendedType();

  Value *MaskShAmt;

  // ((1 << MaskShAmt) - 1)
  auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
  // (~(-1 << maskNbits))
  auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
  // (-1 >> MaskShAmt)
  auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
  // ((-1 << MaskShAmt) >> MaskShAmt)
  auto MaskD =
      m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));

  Value *X;
  Constant *NewMask;

  if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
    // Can we simplify (MaskShAmt+ShiftShAmt) ?
    auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
        MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
    if (!SumOfShAmts)
      return nullptr; // Did not simplify.
    // In this pattern SumOfShAmts correlates with the number of low bits
    // that shall remain in the root value (OuterShift).

    // An extend of an undef value becomes zero because the high bits are never
    // completely unknown. Replace the the `undef` shift amounts with final
    // shift bitwidth to ensure that the value remains undef when creating the
    // subsequent shift op.
    SumOfShAmts = replaceUndefsWith(
        SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
                                      ExtendedTy->getScalarSizeInBits()));
    auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
    // And compute the mask as usual: ~(-1 << (SumOfShAmts))
    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
    auto *ExtendedInvertedMask =
        ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
    NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
  } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
             match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
                                 m_Deferred(MaskShAmt)))) {
    // Can we simplify (ShiftShAmt-MaskShAmt) ?
    auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
        ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
    if (!ShAmtsDiff)
      return nullptr; // Did not simplify.
    // In this pattern ShAmtsDiff correlates with the number of high bits that
    // shall be unset in the root value (OuterShift).

    // An extend of an undef value becomes zero because the high bits are never
    // completely unknown. Replace the the `undef` shift amounts with negated
    // bitwidth of innermost shift to ensure that the value remains undef when
    // creating the subsequent shift op.
    unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
    ShAmtsDiff = replaceUndefsWith(
        ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
                                     -WidestTyBitWidth));
    auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
        ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
                                              WidestTyBitWidth,
                                              /*isSigned=*/false),
                             ShAmtsDiff),
        ExtendedTy);
    // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
    NewMask =
        ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
  } else
    return nullptr; // Don't know anything about this pattern.

  NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);

  // Does this mask has any unset bits? If not then we can just not apply it.
  bool NeedMask = !match(NewMask, m_AllOnes());

  // If we need to apply a mask, there are several more restrictions we have.
  if (NeedMask) {
    // The old masking instruction must go away.
    if (!Masked->hasOneUse())
      return nullptr;
    // The original "masking" instruction must not have been`ashr`.
    if (match(Masked, m_AShr(m_Value(), m_Value())))
      return nullptr;
  }

  // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
  auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
                                          OuterShift->getOperand(1));

  if (!NeedMask)
    return NewShift;

  Builder.Insert(NewShift);
  return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
}

Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  assert(Op0->getType() == Op1->getType());

  // If the shift amount is a one-use `sext`, we can demote it to `zext`.
  Value *Y;
  if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
    Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
    return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
  }

  // See if we can fold away this shift.
  if (SimplifyDemandedInstructionBits(I))
    return &I;

  // Try to fold constant and into select arguments.
  if (isa<Constant>(Op0))
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *R = FoldOpIntoSelect(I, SI))
        return R;

  if (Constant *CUI = dyn_cast<Constant>(Op1))
    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
      return Res;

  if (auto *NewShift = cast_or_null<Instruction>(
          reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
    return NewShift;

  // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
  // iff A and C2 are both positive.
  Value *A;
  Constant *C;
  if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
    if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
        isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
      return BinaryOperator::Create(
          I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);

  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
  // Because shifts by negative values (which could occur if A were negative)
  // are undefined.
  const APInt *B;
  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
    // demand the sign bit (and many others) here??
    Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
                                   Op1->getName());
    I.setOperand(1, Rem);
    return &I;
  }

  return nullptr;
}

/// Return true if we can simplify two logical (either left or right) shifts
/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
                                    Instruction *InnerShift, InstCombiner &IC,
                                    Instruction *CxtI) {
  assert(InnerShift->isLogicalShift() && "Unexpected instruction type");

  // We need constant scalar or constant splat shifts.
  const APInt *InnerShiftConst;
  if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
    return false;

  // Two logical shifts in the same direction:
  // shl (shl X, C1), C2 -->  shl X, C1 + C2
  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
  if (IsInnerShl == IsOuterShl)
    return true;

  // Equal shift amounts in opposite directions become bitwise 'and':
  // lshr (shl X, C), C --> and X, C'
  // shl (lshr X, C), C --> and X, C'
  if (*InnerShiftConst == OuterShAmt)
    return true;

  // If the 2nd shift is bigger than the 1st, we can fold:
  // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
  // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
  // but it isn't profitable unless we know the and'd out bits are already zero.
  // Also, check that the inner shift is valid (less than the type width) or
  // we'll crash trying to produce the bit mask for the 'and'.
  unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
  if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
    unsigned InnerShAmt = InnerShiftConst->getZExtValue();
    unsigned MaskShift =
        IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
    APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
    if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
      return true;
  }

  return false;
}

/// See if we can compute the specified value, but shifted logically to the left
/// or right by some number of bits. This should return true if the expression
/// can be computed for the same cost as the current expression tree. This is
/// used to eliminate extraneous shifting from things like:
///      %C = shl i128 %A, 64
///      %D = shl i128 %B, 96
///      %E = or i128 %C, %D
///      %F = lshr i128 %E, 64
/// where the client will ask if E can be computed shifted right by 64-bits. If
/// this succeeds, getShiftedValue() will be called to produce the value.
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
                               InstCombiner &IC, Instruction *CxtI) {
  // We can always evaluate constants shifted.
  if (isa<Constant>(V))
    return true;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // If this is the opposite shift, we can directly reuse the input of the shift
  // if the needed bits are already zero in the input.  This allows us to reuse
  // the value which means that we don't care if the shift has multiple uses.
  //  TODO:  Handle opposite shift by exact value.
  ConstantInt *CI = nullptr;
  if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
      (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
    if (CI->getValue() == NumBits) {
      // TODO: Check that the input bits are already zero with MaskedValueIsZero
#if 0
      // If this is a truncate of a logical shr, we can truncate it to a smaller
      // lshr iff we know that the bits we would otherwise be shifting in are
      // already zeros.
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
      uint32_t BitWidth = Ty->getScalarSizeInBits();
      if (MaskedValueIsZero(I->getOperand(0),
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
          CI->getLimitedValue(BitWidth) < BitWidth) {
        return CanEvaluateTruncated(I->getOperand(0), Ty);
      }
#endif

    }
  }

  // We can't mutate something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  switch (I->getOpcode()) {
  default: return false;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
           canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);

  case Instruction::Shl:
  case Instruction::LShr:
    return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);

  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    Value *TrueVal = SI->getTrueValue();
    Value *FalseVal = SI->getFalseValue();
    return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
           canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
  }
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
        return false;
    return true;
  }
  }
}

/// Fold OuterShift (InnerShift X, C1), C2.
/// See canEvaluateShiftedShift() for the constraints on these instructions.
static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
                               bool IsOuterShl,
                               InstCombiner::BuilderTy &Builder) {
  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
  Type *ShType = InnerShift->getType();
  unsigned TypeWidth = ShType->getScalarSizeInBits();

  // We only accept shifts-by-a-constant in canEvaluateShifted().
  const APInt *C1;
  match(InnerShift->getOperand(1), m_APInt(C1));
  unsigned InnerShAmt = C1->getZExtValue();

  // Change the shift amount and clear the appropriate IR flags.
  auto NewInnerShift = [&](unsigned ShAmt) {
    InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
    if (IsInnerShl) {
      InnerShift->setHasNoUnsignedWrap(false);
      InnerShift->setHasNoSignedWrap(false);
    } else {
      InnerShift->setIsExact(false);
    }
    return InnerShift;
  };

  // Two logical shifts in the same direction:
  // shl (shl X, C1), C2 -->  shl X, C1 + C2
  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
  if (IsInnerShl == IsOuterShl) {
    // If this is an oversized composite shift, then unsigned shifts get 0.
    if (InnerShAmt + OuterShAmt >= TypeWidth)
      return Constant::getNullValue(ShType);

    return NewInnerShift(InnerShAmt + OuterShAmt);
  }

  // Equal shift amounts in opposite directions become bitwise 'and':
  // lshr (shl X, C), C --> and X, C'
  // shl (lshr X, C), C --> and X, C'
  if (InnerShAmt == OuterShAmt) {
    APInt Mask = IsInnerShl
                     ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
                     : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
    Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
                                   ConstantInt::get(ShType, Mask));
    if (auto *AndI = dyn_cast<Instruction>(And)) {
      AndI->moveBefore(InnerShift);
      AndI->takeName(InnerShift);
    }
    return And;
  }

  assert(InnerShAmt > OuterShAmt &&
         "Unexpected opposite direction logical shift pair");

  // In general, we would need an 'and' for this transform, but
  // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
  // lshr (shl X, C1), C2 -->  shl X, C1 - C2
  // shl (lshr X, C1), C2 --> lshr X, C1 - C2
  return NewInnerShift(InnerShAmt - OuterShAmt);
}

/// When canEvaluateShifted() returns true for an expression, this function
/// inserts the new computation that produces the shifted value.
static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
                              InstCombiner &IC, const DataLayout &DL) {
  // We can always evaluate constants shifted.
  if (Constant *C = dyn_cast<Constant>(V)) {
    if (isLeftShift)
      V = IC.Builder.CreateShl(C, NumBits);
    else
      V = IC.Builder.CreateLShr(C, NumBits);
    // If we got a constantexpr back, try to simplify it with TD info.
    if (auto *C = dyn_cast<Constant>(V))
      if (auto *FoldedC =
              ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
        V = FoldedC;
    return V;
  }

  Instruction *I = cast<Instruction>(V);
  IC.Worklist.Add(I);

  switch (I->getOpcode()) {
  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    I->setOperand(
        0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
    I->setOperand(
        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    return I;

  case Instruction::Shl:
  case Instruction::LShr:
    return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
                            IC.Builder);

  case Instruction::Select:
    I->setOperand(
        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    I->setOperand(
        2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
    return I;
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
                                              isLeftShift, IC, DL));
    return PN;
  }
  }
}

// If this is a bitwise operator or add with a constant RHS we might be able
// to pull it through a shift.
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
                                         BinaryOperator *BO) {
  switch (BO->getOpcode()) {
  default:
    return false; // Do not perform transform!
  case Instruction::Add:
    return Shift.getOpcode() == Instruction::Shl;
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::And:
    return true;
  }
}

Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
                                               BinaryOperator &I) {
  bool isLeftShift = I.getOpcode() == Instruction::Shl;

  const APInt *Op1C;
  if (!match(Op1, m_APInt(Op1C)))
    return nullptr;

  // See if we can propagate this shift into the input, this covers the trivial
  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
  if (I.getOpcode() != Instruction::AShr &&
      canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
    LLVM_DEBUG(
        dbgs() << "ICE: GetShiftedValue propagating shift through expression"
                  " to eliminate shift:\n  IN: "
               << *Op0 << "\n  SH: " << I << "\n");

    return replaceInstUsesWith(
        I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
  }

  // See if we can simplify any instructions used by the instruction whose sole
  // purpose is to compute bits we don't care about.
  unsigned TypeBits = Op0->getType()->getScalarSizeInBits();

  assert(!Op1C->uge(TypeBits) &&
         "Shift over the type width should have been removed already");

  if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
    return FoldedShift;

  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    // place.  Don't try to do this transformation in this case.  Also, we
    // require that the input operand is a shift-by-constant so that we have
    // confidence that the shifts will get folded together.  We could do this
    // xform in more cases, but it is unlikely to be profitable.
    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
        isa<ConstantInt>(TrOp->getOperand(1))) {
      // Okay, we'll do this xform.  Make the shift of shift.
      Constant *ShAmt =
          ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
      // (shift2 (shift1 & 0x00FF), c2)
      Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());

      // For logical shifts, the truncation has the effect of making the high
      // part of the register be zeros.  Emulate this by inserting an AND to
      // clear the top bits as needed.  This 'and' will usually be zapped by
      // other xforms later if dead.
      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
      unsigned DstSize = TI->getType()->getScalarSizeInBits();
      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));

      // The mask we constructed says what the trunc would do if occurring
      // between the shifts.  We want to know the effect *after* the second
      // shift.  We know that it is a logical shift by a constant, so adjust the
      // mask as appropriate.
      if (I.getOpcode() == Instruction::Shl)
        MaskV <<= Op1C->getZExtValue();
      else {
        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
        MaskV.lshrInPlace(Op1C->getZExtValue());
      }

      // shift1 & 0x00FF
      Value *And = Builder.CreateAnd(NSh,
                                     ConstantInt::get(I.getContext(), MaskV),
                                     TI->getName());

      // Return the value truncated to the interesting size.
      return new TruncInst(And, I.getType());
    }
  }

  if (Op0->hasOneUse()) {
    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
      Value *V1, *V2;
      ConstantInt *CC;
      switch (Op0BO->getOpcode()) {
      default: break;
      case Instruction::Add:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor: {
        // These operators commute.
        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
                  m_Specific(Op1)))) {
          Value *YS =         // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
          // (X + (Y << C))
          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
                                         Op0BO->getOperand(1)->getName());
          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);

          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
          return BinaryOperator::CreateAnd(X, Mask);
        }

        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
        Value *Op0BOOp1 = Op0BO->getOperand(1);
        if (isLeftShift && Op0BOOp1->hasOneUse() &&
            match(Op0BOOp1,
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
                        m_ConstantInt(CC)))) {
          Value *YS =   // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
          // X & (CC << C)
          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");
          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
        }
        LLVM_FALLTHROUGH;
      }

      case Instruction::Sub: {
        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
                  m_Specific(Op1)))) {
          Value *YS =  // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
          // (X + (Y << C))
          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
                                         Op0BO->getOperand(0)->getName());
          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);

          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
          return BinaryOperator::CreateAnd(X, Mask);
        }

        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
            match(Op0BO->getOperand(0),
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
                        m_ConstantInt(CC))) && V2 == Op1) {
          Value *YS = // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
          // X & (CC << C)
          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");

          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
        }

        break;
      }
      }


      // If the operand is a bitwise operator with a constant RHS, and the
      // shift is the only use, we can pull it out of the shift.
      const APInt *Op0C;
      if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
        if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
          Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                     cast<Constant>(Op0BO->getOperand(1)), Op1);

          Value *NewShift =
            Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
          NewShift->takeName(Op0BO);

          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
                                        NewRHS);
        }
      }

      // If the operand is a subtract with a constant LHS, and the shift
      // is the only use, we can pull it out of the shift.
      // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
      if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
          match(Op0BO->getOperand(0), m_APInt(Op0C))) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                   cast<Constant>(Op0BO->getOperand(0)), Op1);

        Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
        NewShift->takeName(Op0BO);

        return BinaryOperator::CreateSub(NewRHS, NewShift);
      }
    }

    // If we have a select that conditionally executes some binary operator,
    // see if we can pull it the select and operator through the shift.
    //
    // For example, turning:
    //   shl (select C, (add X, C1), X), C2
    // Into:
    //   Y = shl X, C2
    //   select C, (add Y, C1 << C2), Y
    Value *Cond;
    BinaryOperator *TBO;
    Value *FalseVal;
    if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
                            m_Value(FalseVal)))) {
      const APInt *C;
      if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
          match(TBO->getOperand(1), m_APInt(C)) &&
          canShiftBinOpWithConstantRHS(I, TBO)) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                       cast<Constant>(TBO->getOperand(1)), Op1);

        Value *NewShift =
          Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
        Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
                                           NewRHS);
        return SelectInst::Create(Cond, NewOp, NewShift);
      }
    }

    BinaryOperator *FBO;
    Value *TrueVal;
    if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
                            m_OneUse(m_BinOp(FBO))))) {
      const APInt *C;
      if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
          match(FBO->getOperand(1), m_APInt(C)) &&
          canShiftBinOpWithConstantRHS(I, FBO)) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                       cast<Constant>(FBO->getOperand(1)), Op1);

        Value *NewShift =
          Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
        Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
                                           NewRHS);
        return SelectInst::Create(Cond, NewShift, NewOp);
      }
    }
  }

  return nullptr;
}

Instruction *InstCombiner::visitShl(BinaryOperator &I) {
  const SimplifyQuery Q = SQ.getWithInstruction(&I);

  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *V = commonShiftTransforms(I))
    return V;

  if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
    return V;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();

  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();

    // shl (zext X), ShAmt --> zext (shl X, ShAmt)
    // This is only valid if X would have zeros shifted out.
    Value *X;
    if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
      unsigned SrcWidth = X->getType()->getScalarSizeInBits();
      if (ShAmt < SrcWidth &&
          MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
        return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
    }

    // (X >> C) << C --> X & (-1 << C)
    if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
      APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
    }

    // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
    // needs a few fixes for the rotate pattern recognition first.
    const APInt *ShOp1;
    if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
      unsigned ShrAmt = ShOp1->getZExtValue();
      if (ShrAmt < ShAmt) {
        // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
        auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
        return NewShl;
      }
      if (ShrAmt > ShAmt) {
        // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
        auto *NewShr = BinaryOperator::Create(
            cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
        NewShr->setIsExact(true);
        return NewShr;
      }
    }

    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized shifts are simplified to zero in InstSimplify.
      if (AmtSum < BitWidth)
        // (X << C1) << C2 --> X << (C1 + C2)
        return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
    }

    // If the shifted-out value is known-zero, then this is a NUW shift.
    if (!I.hasNoUnsignedWrap() &&
        MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setHasNoUnsignedWrap();
      return &I;
    }

    // If the shifted-out value is all signbits, then this is a NSW shift.
    if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
      I.setHasNoSignedWrap();
      return &I;
    }
  }

  // Transform  (x >> y) << y  to  x & (-1 << y)
  // Valid for any type of right-shift.
  Value *X;
  if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
    Value *Mask = Builder.CreateShl(AllOnes, Op1);
    return BinaryOperator::CreateAnd(Mask, X);
  }

  Constant *C1;
  if (match(Op1, m_Constant(C1))) {
    Constant *C2;
    Value *X;
    // (C2 << X) << C1 --> (C2 << C1) << X
    if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
      return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);

    // (X * C2) << C1 --> X * (C2 << C1)
    if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
      return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));

    // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
    if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
      auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
      return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
    }
  }

  // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
  if (match(Op0, m_One()) &&
      match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
    return BinaryOperator::CreateLShr(
        ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);

  return nullptr;
}

Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *R = commonShiftTransforms(I))
    return R;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();
    unsigned BitWidth = Ty->getScalarSizeInBits();
    auto *II = dyn_cast<IntrinsicInst>(Op0);
    if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
        (II->getIntrinsicID() == Intrinsic::ctlz ||
         II->getIntrinsicID() == Intrinsic::cttz ||
         II->getIntrinsicID() == Intrinsic::ctpop)) {
      // ctlz.i32(x)>>5  --> zext(x == 0)
      // cttz.i32(x)>>5  --> zext(x == 0)
      // ctpop.i32(x)>>5 --> zext(x == -1)
      bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
      Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
      Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
      return new ZExtInst(Cmp, Ty);
    }

    Value *X;
    const APInt *ShOp1;
    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
      if (ShOp1->ult(ShAmt)) {
        unsigned ShlAmt = ShOp1->getZExtValue();
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
          // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
          auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
          NewLShr->setIsExact(I.isExact());
          return NewLShr;
        }
        // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
        Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
        return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
      }
      if (ShOp1->ugt(ShAmt)) {
        unsigned ShlAmt = ShOp1->getZExtValue();
        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
          // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
          auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
          NewShl->setHasNoUnsignedWrap(true);
          return NewShl;
        }
        // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
        Value *NewShl = Builder.CreateShl(X, ShiftDiff);
        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
        return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
      }
      assert(*ShOp1 == ShAmt);
      // (X << C) >>u C --> X & (-1 >>u C)
      APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
    }

    if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
      assert(ShAmt < X->getType()->getScalarSizeInBits() &&
             "Big shift not simplified to zero?");
      // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
      Value *NewLShr = Builder.CreateLShr(X, ShAmt);
      return new ZExtInst(NewLShr, Ty);
    }

    if (match(Op0, m_SExt(m_Value(X))) &&
        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
      // Are we moving the sign bit to the low bit and widening with high zeros?
      unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
      if (ShAmt == BitWidth - 1) {
        // lshr (sext i1 X to iN), N-1 --> zext X to iN
        if (SrcTyBitWidth == 1)
          return new ZExtInst(X, Ty);

        // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
        if (Op0->hasOneUse()) {
          Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
          return new ZExtInst(NewLShr, Ty);
        }
      }

      // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
      if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
        // The new shift amount can't be more than the narrow source type.
        unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
        Value *AShr = Builder.CreateAShr(X, NewShAmt);
        return new ZExtInst(AShr, Ty);
      }
    }

    if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized shifts are simplified to zero in InstSimplify.
      if (AmtSum < BitWidth)
        // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
        return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
    }

    // If the shifted-out value is known-zero, then this is an exact shift.
    if (!I.isExact() &&
        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setIsExact();
      return &I;
    }
  }

  // Transform  (x << y) >> y  to  x & (-1 >> y)
  Value *X;
  if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
    Value *Mask = Builder.CreateLShr(AllOnes, Op1);
    return BinaryOperator::CreateAnd(Mask, X);
  }

  return nullptr;
}

Instruction *
InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
    BinaryOperator &OldAShr) {
  assert(OldAShr.getOpcode() == Instruction::AShr &&
         "Must be called with arithmetic right-shift instruction only.");

  // Check that constant C is a splat of the element-wise bitwidth of V.
  auto BitWidthSplat = [](Constant *C, Value *V) {
    return match(
        C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
                              APInt(C->getType()->getScalarSizeInBits(),
                                    V->getType()->getScalarSizeInBits())));
  };

  // It should look like variable-length sign-extension on the outside:
  //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
  Value *NBits;
  Instruction *MaybeTrunc;
  Constant *C1, *C2;
  if (!match(&OldAShr,
             m_AShr(m_Shl(m_Instruction(MaybeTrunc),
                          m_ZExtOrSelf(m_Sub(m_Constant(C1),
                                             m_ZExtOrSelf(m_Value(NBits))))),
                    m_ZExtOrSelf(m_Sub(m_Constant(C2),
                                       m_ZExtOrSelf(m_Deferred(NBits)))))) ||
      !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
    return nullptr;

  // There may or may not be a truncation after outer two shifts.
  Instruction *HighBitExtract;
  match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
  bool HadTrunc = MaybeTrunc != HighBitExtract;

  // And finally, the innermost part of the pattern must be a right-shift.
  Value *X, *NumLowBitsToSkip;
  if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
    return nullptr;

  // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
  Constant *C0;
  if (!match(NumLowBitsToSkip,
             m_ZExtOrSelf(
                 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
      !BitWidthSplat(C0, HighBitExtract))
    return nullptr;

  // Since the NBits is identical for all shifts, if the outermost and
  // innermost shifts are identical, then outermost shifts are redundant.
  // If we had truncation, do keep it though.
  if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
    return replaceInstUsesWith(OldAShr, MaybeTrunc);

  // Else, if there was a truncation, then we need to ensure that one
  // instruction will go away.
  if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
    return nullptr;

  // Finally, bypass two innermost shifts, and perform the outermost shift on
  // the operands of the innermost shift.
  Instruction *NewAShr =
      BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
  NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
  if (!HadTrunc)
    return NewAShr;

  Builder.Insert(NewAShr);
  return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
}

Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *R = commonShiftTransforms(I))
    return R;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();
  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();

    // If the shift amount equals the difference in width of the destination
    // and source scalar types:
    // ashr (shl (zext X), C), C --> sext X
    Value *X;
    if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
        ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
      return new SExtInst(X, Ty);

    // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
    // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    const APInt *ShOp1;
    if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
        ShOp1->ult(BitWidth)) {
      unsigned ShlAmt = ShOp1->getZExtValue();
      if (ShlAmt < ShAmt) {
        // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
        auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
        NewAShr->setIsExact(I.isExact());
        return NewAShr;
      }
      if (ShlAmt > ShAmt) {
        // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
        auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
        NewShl->setHasNoSignedWrap(true);
        return NewShl;
      }
    }

    if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
        ShOp1->ult(BitWidth)) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized arithmetic shifts replicate the sign bit.
      AmtSum = std::min(AmtSum, BitWidth - 1);
      // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
      return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
    }

    if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
        (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
      // ashr (sext X), C --> sext (ashr X, C')
      Type *SrcTy = X->getType();
      ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
      Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
      return new SExtInst(NewSh, Ty);
    }

    // If the shifted-out value is known-zero, then this is an exact shift.
    if (!I.isExact() &&
        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setIsExact();
      return &I;
    }
  }

  if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
    return R;

  // See if we can turn a signed shr into an unsigned shr.
  if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
    return BinaryOperator::CreateLShr(Op0, Op1);

  return nullptr;
}