reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
//===-- sanitizer_posix_libcdep.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements libc-dependent POSIX-specific functions
// from sanitizer_libc.h.
//===----------------------------------------------------------------------===//

#include "sanitizer_platform.h"

#if SANITIZER_POSIX

#include "sanitizer_common.h"
#include "sanitizer_flags.h"
#include "sanitizer_platform_limits_netbsd.h"
#include "sanitizer_platform_limits_openbsd.h"
#include "sanitizer_platform_limits_posix.h"
#include "sanitizer_platform_limits_solaris.h"
#include "sanitizer_posix.h"
#include "sanitizer_procmaps.h"

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#if SANITIZER_FREEBSD
// The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before
// that, it was never implemented.  So just define it to zero.
#undef MAP_NORESERVE
#define MAP_NORESERVE 0
#endif

typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);

namespace __sanitizer {

u32 GetUid() {
  return getuid();
}

uptr GetThreadSelf() {
  return (uptr)pthread_self();
}

void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
  uptr page_size = GetPageSizeCached();
  uptr beg_aligned = RoundUpTo(beg, page_size);
  uptr end_aligned = RoundDownTo(end, page_size);
  if (beg_aligned < end_aligned)
    // In the default Solaris compilation environment, madvise() is declared
    // to take a caddr_t arg; casting it to void * results in an invalid
    // conversion error, so use char * instead.
    madvise((char *)beg_aligned, end_aligned - beg_aligned,
            SANITIZER_MADVISE_DONTNEED);
}

void SetShadowRegionHugePageMode(uptr addr, uptr size) {
#ifdef MADV_NOHUGEPAGE  // May not be defined on old systems.
  if (common_flags()->no_huge_pages_for_shadow)
    madvise((char *)addr, size, MADV_NOHUGEPAGE);
  else
    madvise((char *)addr, size, MADV_HUGEPAGE);
#endif  // MADV_NOHUGEPAGE
}

bool DontDumpShadowMemory(uptr addr, uptr length) {
#if defined(MADV_DONTDUMP)
  return madvise((char *)addr, length, MADV_DONTDUMP) == 0;
#elif defined(MADV_NOCORE)
  return madvise((char *)addr, length, MADV_NOCORE) == 0;
#else
  return true;
#endif  // MADV_DONTDUMP
}

static rlim_t getlim(int res) {
  rlimit rlim;
  CHECK_EQ(0, getrlimit(res, &rlim));
  return rlim.rlim_cur;
}

static void setlim(int res, rlim_t lim) {
  struct rlimit rlim;
  if (getrlimit(res, const_cast<struct rlimit *>(&rlim))) {
    Report("ERROR: %s getrlimit() failed %d\n", SanitizerToolName, errno);
    Die();
  }
  rlim.rlim_cur = lim;
  if (setrlimit(res, const_cast<struct rlimit *>(&rlim))) {
    Report("ERROR: %s setrlimit() failed %d\n", SanitizerToolName, errno);
    Die();
  }
}

void DisableCoreDumperIfNecessary() {
  if (common_flags()->disable_coredump) {
    setlim(RLIMIT_CORE, 0);
  }
}

bool StackSizeIsUnlimited() {
  rlim_t stack_size = getlim(RLIMIT_STACK);
  return (stack_size == RLIM_INFINITY);
}

void SetStackSizeLimitInBytes(uptr limit) {
  setlim(RLIMIT_STACK, (rlim_t)limit);
  CHECK(!StackSizeIsUnlimited());
}

bool AddressSpaceIsUnlimited() {
  rlim_t as_size = getlim(RLIMIT_AS);
  return (as_size == RLIM_INFINITY);
}

void SetAddressSpaceUnlimited() {
  setlim(RLIMIT_AS, RLIM_INFINITY);
  CHECK(AddressSpaceIsUnlimited());
}

void SleepForSeconds(int seconds) {
  sleep(seconds);
}

void SleepForMillis(int millis) {
  usleep(millis * 1000);
}

void Abort() {
#if !SANITIZER_GO
  // If we are handling SIGABRT, unhandle it first.
  // TODO(vitalybuka): Check if handler belongs to sanitizer.
  if (GetHandleSignalMode(SIGABRT) != kHandleSignalNo) {
    struct sigaction sigact;
    internal_memset(&sigact, 0, sizeof(sigact));
    sigact.sa_sigaction = (sa_sigaction_t)SIG_DFL;
    internal_sigaction(SIGABRT, &sigact, nullptr);
  }
#endif

  abort();
}

int Atexit(void (*function)(void)) {
#if !SANITIZER_GO
  return atexit(function);
#else
  return 0;
#endif
}

bool SupportsColoredOutput(fd_t fd) {
  return isatty(fd) != 0;
}

#if !SANITIZER_GO
// TODO(glider): different tools may require different altstack size.
static const uptr kAltStackSize = SIGSTKSZ * 4;  // SIGSTKSZ is not enough.

void SetAlternateSignalStack() {
  stack_t altstack, oldstack;
  CHECK_EQ(0, sigaltstack(nullptr, &oldstack));
  // If the alternate stack is already in place, do nothing.
  // Android always sets an alternate stack, but it's too small for us.
  if (!SANITIZER_ANDROID && !(oldstack.ss_flags & SS_DISABLE)) return;
  // TODO(glider): the mapped stack should have the MAP_STACK flag in the
  // future. It is not required by man 2 sigaltstack now (they're using
  // malloc()).
  void* base = MmapOrDie(kAltStackSize, __func__);
  altstack.ss_sp = (char*) base;
  altstack.ss_flags = 0;
  altstack.ss_size = kAltStackSize;
  CHECK_EQ(0, sigaltstack(&altstack, nullptr));
}

void UnsetAlternateSignalStack() {
  stack_t altstack, oldstack;
  altstack.ss_sp = nullptr;
  altstack.ss_flags = SS_DISABLE;
  altstack.ss_size = kAltStackSize;  // Some sane value required on Darwin.
  CHECK_EQ(0, sigaltstack(&altstack, &oldstack));
  UnmapOrDie(oldstack.ss_sp, oldstack.ss_size);
}

static void MaybeInstallSigaction(int signum,
                                  SignalHandlerType handler) {
  if (GetHandleSignalMode(signum) == kHandleSignalNo) return;

  struct sigaction sigact;
  internal_memset(&sigact, 0, sizeof(sigact));
  sigact.sa_sigaction = (sa_sigaction_t)handler;
  // Do not block the signal from being received in that signal's handler.
  // Clients are responsible for handling this correctly.
  sigact.sa_flags = SA_SIGINFO | SA_NODEFER;
  if (common_flags()->use_sigaltstack) sigact.sa_flags |= SA_ONSTACK;
  CHECK_EQ(0, internal_sigaction(signum, &sigact, nullptr));
  VReport(1, "Installed the sigaction for signal %d\n", signum);
}

void InstallDeadlySignalHandlers(SignalHandlerType handler) {
  // Set the alternate signal stack for the main thread.
  // This will cause SetAlternateSignalStack to be called twice, but the stack
  // will be actually set only once.
  if (common_flags()->use_sigaltstack) SetAlternateSignalStack();
  MaybeInstallSigaction(SIGSEGV, handler);
  MaybeInstallSigaction(SIGBUS, handler);
  MaybeInstallSigaction(SIGABRT, handler);
  MaybeInstallSigaction(SIGFPE, handler);
  MaybeInstallSigaction(SIGILL, handler);
  MaybeInstallSigaction(SIGTRAP, handler);
}

bool SignalContext::IsStackOverflow() const {
  // Access at a reasonable offset above SP, or slightly below it (to account
  // for x86_64 or PowerPC redzone, ARM push of multiple registers, etc) is
  // probably a stack overflow.
#ifdef __s390__
  // On s390, the fault address in siginfo points to start of the page, not
  // to the precise word that was accessed.  Mask off the low bits of sp to
  // take it into account.
  bool IsStackAccess = addr >= (sp & ~0xFFF) && addr < sp + 0xFFFF;
#else
  // Let's accept up to a page size away from top of stack. Things like stack
  // probing can trigger accesses with such large offsets.
  bool IsStackAccess = addr + GetPageSizeCached() > sp && addr < sp + 0xFFFF;
#endif

#if __powerpc__
  // Large stack frames can be allocated with e.g.
  //   lis r0,-10000
  //   stdux r1,r1,r0 # store sp to [sp-10000] and update sp by -10000
  // If the store faults then sp will not have been updated, so test above
  // will not work, because the fault address will be more than just "slightly"
  // below sp.
  if (!IsStackAccess && IsAccessibleMemoryRange(pc, 4)) {
    u32 inst = *(unsigned *)pc;
    u32 ra = (inst >> 16) & 0x1F;
    u32 opcd = inst >> 26;
    u32 xo = (inst >> 1) & 0x3FF;
    // Check for store-with-update to sp. The instructions we accept are:
    //   stbu rs,d(ra)          stbux rs,ra,rb
    //   sthu rs,d(ra)          sthux rs,ra,rb
    //   stwu rs,d(ra)          stwux rs,ra,rb
    //   stdu rs,ds(ra)         stdux rs,ra,rb
    // where ra is r1 (the stack pointer).
    if (ra == 1 &&
        (opcd == 39 || opcd == 45 || opcd == 37 || opcd == 62 ||
         (opcd == 31 && (xo == 247 || xo == 439 || xo == 183 || xo == 181))))
      IsStackAccess = true;
  }
#endif  // __powerpc__

  // We also check si_code to filter out SEGV caused by something else other
  // then hitting the guard page or unmapped memory, like, for example,
  // unaligned memory access.
  auto si = static_cast<const siginfo_t *>(siginfo);
  return IsStackAccess &&
         (si->si_code == si_SEGV_MAPERR || si->si_code == si_SEGV_ACCERR);
}

#endif  // SANITIZER_GO

bool IsAccessibleMemoryRange(uptr beg, uptr size) {
  uptr page_size = GetPageSizeCached();
  // Checking too large memory ranges is slow.
  CHECK_LT(size, page_size * 10);
  int sock_pair[2];
  if (pipe(sock_pair))
    return false;
  uptr bytes_written =
      internal_write(sock_pair[1], reinterpret_cast<void *>(beg), size);
  int write_errno;
  bool result;
  if (internal_iserror(bytes_written, &write_errno)) {
    CHECK_EQ(EFAULT, write_errno);
    result = false;
  } else {
    result = (bytes_written == size);
  }
  internal_close(sock_pair[0]);
  internal_close(sock_pair[1]);
  return result;
}

void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
  // Some kinds of sandboxes may forbid filesystem access, so we won't be able
  // to read the file mappings from /proc/self/maps. Luckily, neither the
  // process will be able to load additional libraries, so it's fine to use the
  // cached mappings.
  MemoryMappingLayout::CacheMemoryMappings();
}

static bool MmapFixed(uptr fixed_addr, uptr size, int additional_flags,
                      const char *name) {
  size = RoundUpTo(size, GetPageSizeCached());
  fixed_addr = RoundDownTo(fixed_addr, GetPageSizeCached());
  uptr p =
      MmapNamed((void *)fixed_addr, size, PROT_READ | PROT_WRITE,
                MAP_PRIVATE | MAP_FIXED | additional_flags | MAP_ANON, name);
  int reserrno;
  if (internal_iserror(p, &reserrno)) {
    Report("ERROR: %s failed to "
           "allocate 0x%zx (%zd) bytes at address %zx (errno: %d)\n",
           SanitizerToolName, size, size, fixed_addr, reserrno);
    return false;
  }
  IncreaseTotalMmap(size);
  return true;
}

bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
  return MmapFixed(fixed_addr, size, MAP_NORESERVE, name);
}

bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
#if SANITIZER_FREEBSD
  if (common_flags()->no_huge_pages_for_shadow)
    return MmapFixedNoReserve(fixed_addr, size, name);
  // MAP_NORESERVE is implicit with FreeBSD
  return MmapFixed(fixed_addr, size, MAP_ALIGNED_SUPER, name);
#else
  bool r = MmapFixedNoReserve(fixed_addr, size, name);
  if (r)
    SetShadowRegionHugePageMode(fixed_addr, size);
  return r;
#endif
}

uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
  base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size, name)
                     : MmapNoAccess(size);
  size_ = size;
  name_ = name;
  (void)os_handle_;  // unsupported
  return reinterpret_cast<uptr>(base_);
}

// Uses fixed_addr for now.
// Will use offset instead once we've implemented this function for real.
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
  return reinterpret_cast<uptr>(
      MmapFixedOrDieOnFatalError(fixed_addr, size, name));
}

uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
                                    const char *name) {
  return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size, name));
}

void ReservedAddressRange::Unmap(uptr addr, uptr size) {
  CHECK_LE(size, size_);
  if (addr == reinterpret_cast<uptr>(base_))
    // If we unmap the whole range, just null out the base.
    base_ = (size == size_) ? nullptr : reinterpret_cast<void*>(addr + size);
  else
    CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
  size_ -= size;
  UnmapOrDie(reinterpret_cast<void*>(addr), size);
}

void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
  return (void *)MmapNamed((void *)fixed_addr, size, PROT_NONE,
                           MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE | MAP_ANON,
                           name);
}

void *MmapNoAccess(uptr size) {
  unsigned flags = MAP_PRIVATE | MAP_ANON | MAP_NORESERVE;
  return (void *)internal_mmap(nullptr, size, PROT_NONE, flags, -1, 0);
}

// This function is defined elsewhere if we intercepted pthread_attr_getstack.
extern "C" {
SANITIZER_WEAK_ATTRIBUTE int
real_pthread_attr_getstack(void *attr, void **addr, size_t *size);
} // extern "C"

int my_pthread_attr_getstack(void *attr, void **addr, uptr *size) {
#if !SANITIZER_GO && !SANITIZER_MAC
  if (&real_pthread_attr_getstack)
    return real_pthread_attr_getstack((pthread_attr_t *)attr, addr,
                                      (size_t *)size);
#endif
  return pthread_attr_getstack((pthread_attr_t *)attr, addr, (size_t *)size);
}

#if !SANITIZER_GO
void AdjustStackSize(void *attr_) {
  pthread_attr_t *attr = (pthread_attr_t *)attr_;
  uptr stackaddr = 0;
  uptr stacksize = 0;
  my_pthread_attr_getstack(attr, (void**)&stackaddr, &stacksize);
  // GLibC will return (0 - stacksize) as the stack address in the case when
  // stacksize is set, but stackaddr is not.
  bool stack_set = (stackaddr != 0) && (stackaddr + stacksize != 0);
  // We place a lot of tool data into TLS, account for that.
  const uptr minstacksize = GetTlsSize() + 128*1024;
  if (stacksize < minstacksize) {
    if (!stack_set) {
      if (stacksize != 0) {
        VPrintf(1, "Sanitizer: increasing stacksize %zu->%zu\n", stacksize,
                minstacksize);
        pthread_attr_setstacksize(attr, minstacksize);
      }
    } else {
      Printf("Sanitizer: pre-allocated stack size is insufficient: "
             "%zu < %zu\n", stacksize, minstacksize);
      Printf("Sanitizer: pthread_create is likely to fail.\n");
    }
  }
}
#endif // !SANITIZER_GO

pid_t StartSubprocess(const char *program, const char *const argv[],
                      fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
  auto file_closer = at_scope_exit([&] {
    if (stdin_fd != kInvalidFd) {
      internal_close(stdin_fd);
    }
    if (stdout_fd != kInvalidFd) {
      internal_close(stdout_fd);
    }
    if (stderr_fd != kInvalidFd) {
      internal_close(stderr_fd);
    }
  });

  int pid = internal_fork();

  if (pid < 0) {
    int rverrno;
    if (internal_iserror(pid, &rverrno)) {
      Report("WARNING: failed to fork (errno %d)\n", rverrno);
    }
    return pid;
  }

  if (pid == 0) {
    // Child subprocess
    if (stdin_fd != kInvalidFd) {
      internal_close(STDIN_FILENO);
      internal_dup2(stdin_fd, STDIN_FILENO);
      internal_close(stdin_fd);
    }
    if (stdout_fd != kInvalidFd) {
      internal_close(STDOUT_FILENO);
      internal_dup2(stdout_fd, STDOUT_FILENO);
      internal_close(stdout_fd);
    }
    if (stderr_fd != kInvalidFd) {
      internal_close(STDERR_FILENO);
      internal_dup2(stderr_fd, STDERR_FILENO);
      internal_close(stderr_fd);
    }

    for (int fd = sysconf(_SC_OPEN_MAX); fd > 2; fd--) internal_close(fd);

    execv(program, const_cast<char **>(&argv[0]));
    internal__exit(1);
  }

  return pid;
}

bool IsProcessRunning(pid_t pid) {
  int process_status;
  uptr waitpid_status = internal_waitpid(pid, &process_status, WNOHANG);
  int local_errno;
  if (internal_iserror(waitpid_status, &local_errno)) {
    VReport(1, "Waiting on the process failed (errno %d).\n", local_errno);
    return false;
  }
  return waitpid_status == 0;
}

int WaitForProcess(pid_t pid) {
  int process_status;
  uptr waitpid_status = internal_waitpid(pid, &process_status, 0);
  int local_errno;
  if (internal_iserror(waitpid_status, &local_errno)) {
    VReport(1, "Waiting on the process failed (errno %d).\n", local_errno);
    return -1;
  }
  return process_status;
}

bool IsStateDetached(int state) {
  return state == PTHREAD_CREATE_DETACHED;
}

} // namespace __sanitizer

#endif // SANITIZER_POSIX