reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
//===-- sanitizer_quarantine.h ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Memory quarantine for AddressSanitizer and potentially other tools.
// Quarantine caches some specified amount of memory in per-thread caches,
// then evicts to global FIFO queue. When the queue reaches specified threshold,
// oldest memory is recycled.
//
//===----------------------------------------------------------------------===//

#ifndef SANITIZER_QUARANTINE_H
#define SANITIZER_QUARANTINE_H

#include "sanitizer_internal_defs.h"
#include "sanitizer_mutex.h"
#include "sanitizer_list.h"

namespace __sanitizer {

template<typename Node> class QuarantineCache;

struct QuarantineBatch {
  static const uptr kSize = 1021;
  QuarantineBatch *next;
  uptr size;
  uptr count;
  void *batch[kSize];

  void init(void *ptr, uptr size) {
    count = 1;
    batch[0] = ptr;
    this->size = size + sizeof(QuarantineBatch);  // Account for the batch size.
  }

  // The total size of quarantined nodes recorded in this batch.
  uptr quarantined_size() const {
    return size - sizeof(QuarantineBatch);
  }

  void push_back(void *ptr, uptr size) {
    CHECK_LT(count, kSize);
    batch[count++] = ptr;
    this->size += size;
  }

  bool can_merge(const QuarantineBatch* const from) const {
    return count + from->count <= kSize;
  }

  void merge(QuarantineBatch* const from) {
    CHECK_LE(count + from->count, kSize);
    CHECK_GE(size, sizeof(QuarantineBatch));

    for (uptr i = 0; i < from->count; ++i)
      batch[count + i] = from->batch[i];
    count += from->count;
    size += from->quarantined_size();

    from->count = 0;
    from->size = sizeof(QuarantineBatch);
  }
};

COMPILER_CHECK(sizeof(QuarantineBatch) <= (1 << 13));  // 8Kb.

// The callback interface is:
// void Callback::Recycle(Node *ptr);
// void *cb.Allocate(uptr size);
// void cb.Deallocate(void *ptr);
template<typename Callback, typename Node>
class Quarantine {
 public:
  typedef QuarantineCache<Callback> Cache;

  explicit Quarantine(LinkerInitialized)
      : cache_(LINKER_INITIALIZED) {
  }

  void Init(uptr size, uptr cache_size) {
    // Thread local quarantine size can be zero only when global quarantine size
    // is zero (it allows us to perform just one atomic read per Put() call).
    CHECK((size == 0 && cache_size == 0) || cache_size != 0);

    atomic_store_relaxed(&max_size_, size);
    atomic_store_relaxed(&min_size_, size / 10 * 9);  // 90% of max size.
    atomic_store_relaxed(&max_cache_size_, cache_size);

    cache_mutex_.Init();
    recycle_mutex_.Init();
  }

  uptr GetSize() const { return atomic_load_relaxed(&max_size_); }
  uptr GetCacheSize() const {
    return atomic_load_relaxed(&max_cache_size_);
  }

  void Put(Cache *c, Callback cb, Node *ptr, uptr size) {
    uptr cache_size = GetCacheSize();
    if (cache_size) {
      c->Enqueue(cb, ptr, size);
    } else {
      // GetCacheSize() == 0 only when GetSize() == 0 (see Init).
      cb.Recycle(ptr);
    }
    // Check cache size anyway to accommodate for runtime cache_size change.
    if (c->Size() > cache_size)
      Drain(c, cb);
  }

  void NOINLINE Drain(Cache *c, Callback cb) {
    {
      SpinMutexLock l(&cache_mutex_);
      cache_.Transfer(c);
    }
    if (cache_.Size() > GetSize() && recycle_mutex_.TryLock())
      Recycle(atomic_load_relaxed(&min_size_), cb);
  }

  void NOINLINE DrainAndRecycle(Cache *c, Callback cb) {
    {
      SpinMutexLock l(&cache_mutex_);
      cache_.Transfer(c);
    }
    recycle_mutex_.Lock();
    Recycle(0, cb);
  }

  void PrintStats() const {
    // It assumes that the world is stopped, just as the allocator's PrintStats.
    Printf("Quarantine limits: global: %zdMb; thread local: %zdKb\n",
           GetSize() >> 20, GetCacheSize() >> 10);
    cache_.PrintStats();
  }

 private:
  // Read-only data.
  char pad0_[kCacheLineSize];
  atomic_uintptr_t max_size_;
  atomic_uintptr_t min_size_;
  atomic_uintptr_t max_cache_size_;
  char pad1_[kCacheLineSize];
  StaticSpinMutex cache_mutex_;
  StaticSpinMutex recycle_mutex_;
  Cache cache_;
  char pad2_[kCacheLineSize];

  void NOINLINE Recycle(uptr min_size, Callback cb) {
    Cache tmp;
    {
      SpinMutexLock l(&cache_mutex_);
      // Go over the batches and merge partially filled ones to
      // save some memory, otherwise batches themselves (since the memory used
      // by them is counted against quarantine limit) can overcome the actual
      // user's quarantined chunks, which diminishes the purpose of the
      // quarantine.
      uptr cache_size = cache_.Size();
      uptr overhead_size = cache_.OverheadSize();
      CHECK_GE(cache_size, overhead_size);
      // Do the merge only when overhead exceeds this predefined limit (might
      // require some tuning). It saves us merge attempt when the batch list
      // quarantine is unlikely to contain batches suitable for merge.
      const uptr kOverheadThresholdPercents = 100;
      if (cache_size > overhead_size &&
          overhead_size * (100 + kOverheadThresholdPercents) >
              cache_size * kOverheadThresholdPercents) {
        cache_.MergeBatches(&tmp);
      }
      // Extract enough chunks from the quarantine to get below the max
      // quarantine size and leave some leeway for the newly quarantined chunks.
      while (cache_.Size() > min_size) {
        tmp.EnqueueBatch(cache_.DequeueBatch());
      }
    }
    recycle_mutex_.Unlock();
    DoRecycle(&tmp, cb);
  }

  void NOINLINE DoRecycle(Cache *c, Callback cb) {
    while (QuarantineBatch *b = c->DequeueBatch()) {
      const uptr kPrefetch = 16;
      CHECK(kPrefetch <= ARRAY_SIZE(b->batch));
      for (uptr i = 0; i < kPrefetch; i++)
        PREFETCH(b->batch[i]);
      for (uptr i = 0, count = b->count; i < count; i++) {
        if (i + kPrefetch < count)
          PREFETCH(b->batch[i + kPrefetch]);
        cb.Recycle((Node*)b->batch[i]);
      }
      cb.Deallocate(b);
    }
  }
};

// Per-thread cache of memory blocks.
template<typename Callback>
class QuarantineCache {
 public:
  explicit QuarantineCache(LinkerInitialized) {
  }

  QuarantineCache()
      : size_() {
    list_.clear();
  }

  // Total memory used, including internal accounting.
  uptr Size() const {
    return atomic_load_relaxed(&size_);
  }

  // Memory used for internal accounting.
  uptr OverheadSize() const {
    return list_.size() * sizeof(QuarantineBatch);
  }

  void Enqueue(Callback cb, void *ptr, uptr size) {
    if (list_.empty() || list_.back()->count == QuarantineBatch::kSize) {
      QuarantineBatch *b = (QuarantineBatch *)cb.Allocate(sizeof(*b));
      CHECK(b);
      b->init(ptr, size);
      EnqueueBatch(b);
    } else {
      list_.back()->push_back(ptr, size);
      SizeAdd(size);
    }
  }

  void Transfer(QuarantineCache *from_cache) {
    list_.append_back(&from_cache->list_);
    SizeAdd(from_cache->Size());

    atomic_store_relaxed(&from_cache->size_, 0);
  }

  void EnqueueBatch(QuarantineBatch *b) {
    list_.push_back(b);
    SizeAdd(b->size);
  }

  QuarantineBatch *DequeueBatch() {
    if (list_.empty())
      return nullptr;
    QuarantineBatch *b = list_.front();
    list_.pop_front();
    SizeSub(b->size);
    return b;
  }

  void MergeBatches(QuarantineCache *to_deallocate) {
    uptr extracted_size = 0;
    QuarantineBatch *current = list_.front();
    while (current && current->next) {
      if (current->can_merge(current->next)) {
        QuarantineBatch *extracted = current->next;
        // Move all the chunks into the current batch.
        current->merge(extracted);
        CHECK_EQ(extracted->count, 0);
        CHECK_EQ(extracted->size, sizeof(QuarantineBatch));
        // Remove the next batch from the list and account for its size.
        list_.extract(current, extracted);
        extracted_size += extracted->size;
        // Add it to deallocation list.
        to_deallocate->EnqueueBatch(extracted);
      } else {
        current = current->next;
      }
    }
    SizeSub(extracted_size);
  }

  void PrintStats() const {
    uptr batch_count = 0;
    uptr total_overhead_bytes = 0;
    uptr total_bytes = 0;
    uptr total_quarantine_chunks = 0;
    for (List::ConstIterator it = list_.begin(); it != list_.end(); ++it) {
      batch_count++;
      total_bytes += (*it).size;
      total_overhead_bytes += (*it).size - (*it).quarantined_size();
      total_quarantine_chunks += (*it).count;
    }
    uptr quarantine_chunks_capacity = batch_count * QuarantineBatch::kSize;
    int chunks_usage_percent = quarantine_chunks_capacity == 0 ?
        0 : total_quarantine_chunks * 100 / quarantine_chunks_capacity;
    uptr total_quarantined_bytes = total_bytes - total_overhead_bytes;
    int memory_overhead_percent = total_quarantined_bytes == 0 ?
        0 : total_overhead_bytes * 100 / total_quarantined_bytes;
    Printf("Global quarantine stats: batches: %zd; bytes: %zd (user: %zd); "
           "chunks: %zd (capacity: %zd); %d%% chunks used; %d%% memory overhead"
           "\n",
           batch_count, total_bytes, total_quarantined_bytes,
           total_quarantine_chunks, quarantine_chunks_capacity,
           chunks_usage_percent, memory_overhead_percent);
  }

 private:
  typedef IntrusiveList<QuarantineBatch> List;

  List list_;
  atomic_uintptr_t size_;

  void SizeAdd(uptr add) {
    atomic_store_relaxed(&size_, Size() + add);
  }
  void SizeSub(uptr sub) {
    atomic_store_relaxed(&size_, Size() - sub);
  }
};

} // namespace __sanitizer

#endif // SANITIZER_QUARANTINE_H