reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
//===-- tsan_clock.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_placement_new.h"

// SyncClock and ThreadClock implement vector clocks for sync variables
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
// ThreadClock contains fixed-size vector clock for maximum number of threads.
// SyncClock contains growable vector clock for currently necessary number of
// threads.
// Together they implement very simple model of operations, namely:
//
//   void ThreadClock::acquire(const SyncClock *src) {
//     for (int i = 0; i < kMaxThreads; i++)
//       clock[i] = max(clock[i], src->clock[i]);
//   }
//
//   void ThreadClock::release(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = max(dst->clock[i], clock[i]);
//   }
//
//   void ThreadClock::ReleaseStore(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = clock[i];
//   }
//
//   void ThreadClock::acq_rel(SyncClock *dst) {
//     acquire(dst);
//     release(dst);
//   }
//
// Conformance to this model is extensively verified in tsan_clock_test.cpp.
// However, the implementation is significantly more complex. The complexity
// allows to implement important classes of use cases in O(1) instead of O(N).
//
// The use cases are:
// 1. Singleton/once atomic that has a single release-store operation followed
//    by zillions of acquire-loads (the acquire-load is O(1)).
// 2. Thread-local mutex (both lock and unlock can be O(1)).
// 3. Leaf mutex (unlock is O(1)).
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
// 5. An atomic with a single writer (writes can be O(1)).
// The implementation dynamically adopts to workload. So if an atomic is in
// read-only phase, these reads will be O(1); if it later switches to read/write
// phase, the implementation will correctly handle that by switching to O(N).
//
// Thread-safety note: all const operations on SyncClock's are conducted under
// a shared lock; all non-const operations on SyncClock's are conducted under
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
//   the remaining bits hold "acquired" flag (the actual value is thread's
//   reused counter);
//   if acquried == thr->reused_, then the respective thread has already
//   acquired this clock (except possibly for dirty elements).
// dirty_ - holds up to two indeces in the vector clock that other threads
//   need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
//   release-store operation by the thread with release_store_tid_ index.
// release_store_reused_ - reuse count of release_store_tid_.

// We don't have ThreadState in these methods, so this is an ugly hack that
// works only in C++.
#if !SANITIZER_GO
# define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
#else
# define CPP_STAT_INC(typ) (void)0
#endif

namespace __tsan {

static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
  return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
}

// Drop reference to the first level block idx.
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  atomic_uint32_t *ref = ref_ptr(cb);
  u32 v = atomic_load(ref, memory_order_acquire);
  for (;;) {
    CHECK_GT(v, 0);
    if (v == 1)
      break;
    if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
      return;
  }
  // First level block owns second level blocks, so them as well.
  for (uptr i = 0; i < blocks; i++)
    ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
  ctx->clock_alloc.Free(c, idx);
}

ThreadClock::ThreadClock(unsigned tid, unsigned reused)
    : tid_(tid)
    , reused_(reused + 1)  // 0 has special meaning
    , cached_idx_()
    , cached_size_()
    , cached_blocks_() {
  CHECK_LT(tid, kMaxTidInClock);
  CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
  nclk_ = tid_ + 1;
  last_acquire_ = 0;
  internal_memset(clk_, 0, sizeof(clk_));
}

void ThreadClock::ResetCached(ClockCache *c) {
  if (cached_idx_) {
    UnrefClockBlock(c, cached_idx_, cached_blocks_);
    cached_idx_ = 0;
    cached_size_ = 0;
    cached_blocks_ = 0;
  }
}

void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(src->size_, kMaxTid);
  CPP_STAT_INC(StatClockAcquire);

  // Check if it's empty -> no need to do anything.
  const uptr nclk = src->size_;
  if (nclk == 0) {
    CPP_STAT_INC(StatClockAcquireEmpty);
    return;
  }

  bool acquired = false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty dirty = src->dirty_[i];
    unsigned tid = dirty.tid;
    if (tid != kInvalidTid) {
      if (clk_[tid] < dirty.epoch) {
        clk_[tid] = dirty.epoch;
        acquired = true;
      }
    }
  }

  // Check if we've already acquired src after the last release operation on src
  if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
    // O(N) acquire.
    CPP_STAT_INC(StatClockAcquireFull);
    nclk_ = max(nclk_, nclk);
    u64 *dst_pos = &clk_[0];
    for (ClockElem &src_elem : *src) {
      u64 epoch = src_elem.epoch;
      if (*dst_pos < epoch) {
        *dst_pos = epoch;
        acquired = true;
      }
      dst_pos++;
    }

    // Remember that this thread has acquired this clock.
    if (nclk > tid_)
      src->elem(tid_).reused = reused_;
  }

  if (acquired) {
    CPP_STAT_INC(StatClockAcquiredSomething);
    last_acquire_ = clk_[tid_];
    ResetCached(c);
  }
}

void ThreadClock::release(ClockCache *c, SyncClock *dst) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);

  if (dst->size_ == 0) {
    // ReleaseStore will correctly set release_store_tid_,
    // which can be important for future operations.
    ReleaseStore(c, dst);
    return;
  }

  CPP_STAT_INC(StatClockRelease);
  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  // Check if we had not acquired anything from other threads
  // since the last release on dst. If so, we need to update
  // only dst->elem(tid_).
  if (dst->elem(tid_).epoch > last_acquire_) {
    UpdateCurrentThread(c, dst);
    if (dst->release_store_tid_ != tid_ ||
        dst->release_store_reused_ != reused_)
      dst->release_store_tid_ = kInvalidTid;
    return;
  }

  // O(N) release.
  CPP_STAT_INC(StatClockReleaseFull);
  dst->Unshare(c);
  // First, remember whether we've acquired dst.
  bool acquired = IsAlreadyAcquired(dst);
  if (acquired)
    CPP_STAT_INC(StatClockReleaseAcquired);
  // Update dst->clk_.
  dst->FlushDirty();
  uptr i = 0;
  for (ClockElem &ce : *dst) {
    ce.epoch = max(ce.epoch, clk_[i]);
    ce.reused = 0;
    i++;
  }
  // Clear 'acquired' flag in the remaining elements.
  if (nclk_ < dst->size_)
    CPP_STAT_INC(StatClockReleaseClearTail);
  for (uptr i = nclk_; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  dst->release_store_tid_ = kInvalidTid;
  dst->release_store_reused_ = 0;
  // If we've acquired dst, remember this fact,
  // so that we don't need to acquire it on next acquire.
  if (acquired)
    dst->elem(tid_).reused = reused_;
}

void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);
  CPP_STAT_INC(StatClockStore);

  if (dst->size_ == 0 && cached_idx_ != 0) {
    // Reuse the cached clock.
    // Note: we could reuse/cache the cached clock in more cases:
    // we could update the existing clock and cache it, or replace it with the
    // currently cached clock and release the old one. And for a shared
    // existing clock, we could replace it with the currently cached;
    // or unshare, update and cache. But, for simplicity, we currnetly reuse
    // cached clock only when the target clock is empty.
    dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
    dst->tab_idx_ = cached_idx_;
    dst->size_ = cached_size_;
    dst->blocks_ = cached_blocks_;
    CHECK_EQ(dst->dirty_[0].tid, kInvalidTid);
    // The cached clock is shared (immutable),
    // so this is where we store the current clock.
    dst->dirty_[0].tid = tid_;
    dst->dirty_[0].epoch = clk_[tid_];
    dst->release_store_tid_ = tid_;
    dst->release_store_reused_ = reused_;
    // Rememeber that we don't need to acquire it in future.
    dst->elem(tid_).reused = reused_;
    // Grab a reference.
    atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
    return;
  }

  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  if (dst->release_store_tid_ == tid_ &&
      dst->release_store_reused_ == reused_ &&
      dst->elem(tid_).epoch > last_acquire_) {
    CPP_STAT_INC(StatClockStoreFast);
    UpdateCurrentThread(c, dst);
    return;
  }

  // O(N) release-store.
  CPP_STAT_INC(StatClockStoreFull);
  dst->Unshare(c);
  // Note: dst can be larger than this ThreadClock.
  // This is fine since clk_ beyond size is all zeros.
  uptr i = 0;
  for (ClockElem &ce : *dst) {
    ce.epoch = clk_[i];
    ce.reused = 0;
    i++;
  }
  for (uptr i = 0; i < kDirtyTids; i++)
    dst->dirty_[i].tid = kInvalidTid;
  dst->release_store_tid_ = tid_;
  dst->release_store_reused_ = reused_;
  // Rememeber that we don't need to acquire it in future.
  dst->elem(tid_).reused = reused_;

  // If the resulting clock is cachable, cache it for future release operations.
  // The clock is always cachable if we released to an empty sync object.
  if (cached_idx_ == 0 && dst->Cachable()) {
    // Grab a reference to the ClockBlock.
    atomic_uint32_t *ref = ref_ptr(dst->tab_);
    if (atomic_load(ref, memory_order_acquire) == 1)
      atomic_store_relaxed(ref, 2);
    else
      atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
    cached_idx_ = dst->tab_idx_;
    cached_size_ = dst->size_;
    cached_blocks_ = dst->blocks_;
  }
}

void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
  CPP_STAT_INC(StatClockAcquireRelease);
  acquire(c, dst);
  ReleaseStore(c, dst);
}

// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
  // Update the threads time, but preserve 'acquired' flag.
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty *dirty = &dst->dirty_[i];
    const unsigned tid = dirty->tid;
    if (tid == tid_ || tid == kInvalidTid) {
      CPP_STAT_INC(StatClockReleaseFast);
      dirty->tid = tid_;
      dirty->epoch = clk_[tid_];
      return;
    }
  }
  // Reset all 'acquired' flags, O(N).
  // We are going to touch dst elements, so we need to unshare it.
  dst->Unshare(c);
  CPP_STAT_INC(StatClockReleaseSlow);
  dst->elem(tid_).epoch = clk_[tid_];
  for (uptr i = 0; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  dst->FlushDirty();
}

// Checks whether the current thread has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
  if (src->elem(tid_).reused != reused_)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty dirty = src->dirty_[i];
    if (dirty.tid != kInvalidTid) {
      if (clk_[dirty.tid] < dirty.epoch)
        return false;
    }
  }
  return true;
}

// Sets a single element in the vector clock.
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
  DCHECK_LT(tid, kMaxTid);
  DCHECK_GE(v, clk_[tid]);
  clk_[tid] = v;
  if (nclk_ <= tid)
    nclk_ = tid + 1;
  last_acquire_ = clk_[tid_];
  ResetCached(c);
}

void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < nclk_; i++)
    printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
  printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
}

SyncClock::SyncClock() {
  ResetImpl();
}

SyncClock::~SyncClock() {
  // Reset must be called before dtor.
  CHECK_EQ(size_, 0);
  CHECK_EQ(blocks_, 0);
  CHECK_EQ(tab_, 0);
  CHECK_EQ(tab_idx_, 0);
}

void SyncClock::Reset(ClockCache *c) {
  if (size_)
    UnrefClockBlock(c, tab_idx_, blocks_);
  ResetImpl();
}

void SyncClock::ResetImpl() {
  tab_ = 0;
  tab_idx_ = 0;
  size_ = 0;
  blocks_ = 0;
  release_store_tid_ = kInvalidTid;
  release_store_reused_ = 0;
  for (uptr i = 0; i < kDirtyTids; i++)
    dirty_[i].tid = kInvalidTid;
}

void SyncClock::Resize(ClockCache *c, uptr nclk) {
  CPP_STAT_INC(StatClockReleaseResize);
  Unshare(c);
  if (nclk <= capacity()) {
    // Memory is already allocated, just increase the size.
    size_ = nclk;
    return;
  }
  if (size_ == 0) {
    // Grow from 0 to one-level table.
    CHECK_EQ(size_, 0);
    CHECK_EQ(blocks_, 0);
    CHECK_EQ(tab_, 0);
    CHECK_EQ(tab_idx_, 0);
    tab_idx_ = ctx->clock_alloc.Alloc(c);
    tab_ = ctx->clock_alloc.Map(tab_idx_);
    internal_memset(tab_, 0, sizeof(*tab_));
    atomic_store_relaxed(ref_ptr(tab_), 1);
    size_ = 1;
  } else if (size_ > blocks_ * ClockBlock::kClockCount) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
    uptr top = size_ - blocks_ * ClockBlock::kClockCount;
    CHECK_LT(top, ClockBlock::kClockCount);
    const uptr move = top * sizeof(tab_->clock[0]);
    internal_memcpy(&new_cb->clock[0], tab_->clock, move);
    internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
    internal_memset(tab_->clock, 0, move);
    append_block(idx);
  }
  // At this point we have first level table allocated and all clock elements
  // are evacuated from it to a second level block.
  // Add second level tables as necessary.
  while (nclk > capacity()) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    internal_memset(cb, 0, sizeof(*cb));
    append_block(idx);
  }
  size_ = nclk;
}

// Flushes all dirty elements into the main clock array.
void SyncClock::FlushDirty() {
  for (unsigned i = 0; i < kDirtyTids; i++) {
    Dirty *dirty = &dirty_[i];
    if (dirty->tid != kInvalidTid) {
      CHECK_LT(dirty->tid, size_);
      elem(dirty->tid).epoch = dirty->epoch;
      dirty->tid = kInvalidTid;
    }
  }
}

bool SyncClock::IsShared() const {
  if (size_ == 0)
    return false;
  atomic_uint32_t *ref = ref_ptr(tab_);
  u32 v = atomic_load(ref, memory_order_acquire);
  CHECK_GT(v, 0);
  return v > 1;
}

// Unshares the current clock if it's shared.
// Shared clocks are immutable, so they need to be unshared before any updates.
// Note: this does not apply to dirty entries as they are not shared.
void SyncClock::Unshare(ClockCache *c) {
  if (!IsShared())
    return;
  // First, copy current state into old.
  SyncClock old;
  old.tab_ = tab_;
  old.tab_idx_ = tab_idx_;
  old.size_ = size_;
  old.blocks_ = blocks_;
  old.release_store_tid_ = release_store_tid_;
  old.release_store_reused_ = release_store_reused_;
  for (unsigned i = 0; i < kDirtyTids; i++)
    old.dirty_[i] = dirty_[i];
  // Then, clear current object.
  ResetImpl();
  // Allocate brand new clock in the current object.
  Resize(c, old.size_);
  // Now copy state back into this object.
  Iter old_iter(&old);
  for (ClockElem &ce : *this) {
    ce = *old_iter;
    ++old_iter;
  }
  release_store_tid_ = old.release_store_tid_;
  release_store_reused_ = old.release_store_reused_;
  for (unsigned i = 0; i < kDirtyTids; i++)
    dirty_[i] = old.dirty_[i];
  // Drop reference to old and delete if necessary.
  old.Reset(c);
}

// Can we cache this clock for future release operations?
ALWAYS_INLINE bool SyncClock::Cachable() const {
  if (size_ == 0)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    if (dirty_[i].tid != kInvalidTid)
      return false;
  }
  return atomic_load_relaxed(ref_ptr(tab_)) == 1;
}

// elem linearizes the two-level structure into linear array.
// Note: this is used only for one time accesses, vector operations use
// the iterator as it is much faster.
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
  DCHECK_LT(tid, size_);
  const uptr block = tid / ClockBlock::kClockCount;
  DCHECK_LE(block, blocks_);
  tid %= ClockBlock::kClockCount;
  if (block == blocks_)
    return tab_->clock[tid];
  u32 idx = get_block(block);
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  return cb->clock[tid];
}

ALWAYS_INLINE uptr SyncClock::capacity() const {
  if (size_ == 0)
    return 0;
  uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
  // How many clock elements we can fit into the first level block.
  // +1 for ref counter.
  uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
  return blocks_ * ClockBlock::kClockCount + top;
}

ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
  DCHECK(size_);
  DCHECK_LT(bi, blocks_);
  return tab_->table[ClockBlock::kBlockIdx - bi];
}

ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
  uptr bi = blocks_++;
  CHECK_EQ(get_block(bi), 0);
  tab_->table[ClockBlock::kBlockIdx - bi] = idx;
}

// Used only by tests.
u64 SyncClock::get(unsigned tid) const {
  for (unsigned i = 0; i < kDirtyTids; i++) {
    Dirty dirty = dirty_[i];
    if (dirty.tid == tid)
      return dirty.epoch;
  }
  return elem(tid).epoch;
}

// Used only by Iter test.
u64 SyncClock::get_clean(unsigned tid) const {
  return elem(tid).epoch;
}

void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
  printf("] reused=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
  printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
      release_store_tid_, release_store_reused_,
      dirty_[0].tid, dirty_[0].epoch,
      dirty_[1].tid, dirty_[1].epoch);
}

void SyncClock::Iter::Next() {
  // Finished with the current block, move on to the next one.
  block_++;
  if (block_ < parent_->blocks_) {
    // Iterate over the next second level block.
    u32 idx = parent_->get_block(block_);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    pos_ = &cb->clock[0];
    end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
        ClockBlock::kClockCount);
    return;
  }
  if (block_ == parent_->blocks_ &&
      parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
    // Iterate over elements in the first level block.
    pos_ = &parent_->tab_->clock[0];
    end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
        ClockBlock::kClockCount);
    return;
  }
  parent_ = nullptr;  // denotes end
}
}  // namespace __tsan