reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
//===-- tsan_mutex.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_libc.h"
#include "tsan_mutex.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"

namespace __tsan {

// Simple reader-writer spin-mutex. Optimized for not-so-contended case.
// Readers have preference, can possibly starvate writers.

// The table fixes what mutexes can be locked under what mutexes.
// E.g. if the row for MutexTypeThreads contains MutexTypeReport,
// then Report mutex can be locked while under Threads mutex.
// The leaf mutexes can be locked under any other mutexes.
// Recursive locking is not supported.
#if SANITIZER_DEBUG && !SANITIZER_GO
const MutexType MutexTypeLeaf = (MutexType)-1;
static MutexType CanLockTab[MutexTypeCount][MutexTypeCount] = {
  /*0  MutexTypeInvalid*/     {},
  /*1  MutexTypeTrace*/       {MutexTypeLeaf},
  /*2  MutexTypeThreads*/     {MutexTypeReport},
  /*3  MutexTypeReport*/      {MutexTypeSyncVar,
                               MutexTypeMBlock, MutexTypeJavaMBlock},
  /*4  MutexTypeSyncVar*/     {MutexTypeDDetector},
  /*5  MutexTypeSyncTab*/     {},  // unused
  /*6  MutexTypeSlab*/        {MutexTypeLeaf},
  /*7  MutexTypeAnnotations*/ {},
  /*8  MutexTypeAtExit*/      {MutexTypeSyncVar},
  /*9  MutexTypeMBlock*/      {MutexTypeSyncVar},
  /*10 MutexTypeJavaMBlock*/  {MutexTypeSyncVar},
  /*11 MutexTypeDDetector*/   {},
  /*12 MutexTypeFired*/       {MutexTypeLeaf},
  /*13 MutexTypeRacy*/        {MutexTypeLeaf},
  /*14 MutexTypeGlobalProc*/  {},
};

static bool CanLockAdj[MutexTypeCount][MutexTypeCount];
#endif

void InitializeMutex() {
#if SANITIZER_DEBUG && !SANITIZER_GO
  // Build the "can lock" adjacency matrix.
  // If [i][j]==true, then one can lock mutex j while under mutex i.
  const int N = MutexTypeCount;
  int cnt[N] = {};
  bool leaf[N] = {};
  for (int i = 1; i < N; i++) {
    for (int j = 0; j < N; j++) {
      MutexType z = CanLockTab[i][j];
      if (z == MutexTypeInvalid)
        continue;
      if (z == MutexTypeLeaf) {
        CHECK(!leaf[i]);
        leaf[i] = true;
        continue;
      }
      CHECK(!CanLockAdj[i][(int)z]);
      CanLockAdj[i][(int)z] = true;
      cnt[i]++;
    }
  }
  for (int i = 0; i < N; i++) {
    CHECK(!leaf[i] || cnt[i] == 0);
  }
  // Add leaf mutexes.
  for (int i = 0; i < N; i++) {
    if (!leaf[i])
      continue;
    for (int j = 0; j < N; j++) {
      if (i == j || leaf[j] || j == MutexTypeInvalid)
        continue;
      CHECK(!CanLockAdj[j][i]);
      CanLockAdj[j][i] = true;
    }
  }
  // Build the transitive closure.
  bool CanLockAdj2[MutexTypeCount][MutexTypeCount];
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      CanLockAdj2[i][j] = CanLockAdj[i][j];
    }
  }
  for (int k = 0; k < N; k++) {
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < N; j++) {
        if (CanLockAdj2[i][k] && CanLockAdj2[k][j]) {
          CanLockAdj2[i][j] = true;
        }
      }
    }
  }
#if 0
  Printf("Can lock graph:\n");
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      Printf("%d ", CanLockAdj[i][j]);
    }
    Printf("\n");
  }
  Printf("Can lock graph closure:\n");
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      Printf("%d ", CanLockAdj2[i][j]);
    }
    Printf("\n");
  }
#endif
  // Verify that the graph is acyclic.
  for (int i = 0; i < N; i++) {
    if (CanLockAdj2[i][i]) {
      Printf("Mutex %d participates in a cycle\n", i);
      Die();
    }
  }
#endif
}

InternalDeadlockDetector::InternalDeadlockDetector() {
  // Rely on zero initialization because some mutexes can be locked before ctor.
}

#if SANITIZER_DEBUG && !SANITIZER_GO
void InternalDeadlockDetector::Lock(MutexType t) {
  // Printf("LOCK %d @%zu\n", t, seq_ + 1);
  CHECK_GT(t, MutexTypeInvalid);
  CHECK_LT(t, MutexTypeCount);
  u64 max_seq = 0;
  u64 max_idx = MutexTypeInvalid;
  for (int i = 0; i != MutexTypeCount; i++) {
    if (locked_[i] == 0)
      continue;
    CHECK_NE(locked_[i], max_seq);
    if (max_seq < locked_[i]) {
      max_seq = locked_[i];
      max_idx = i;
    }
  }
  locked_[t] = ++seq_;
  if (max_idx == MutexTypeInvalid)
    return;
  // Printf("  last %d @%zu\n", max_idx, max_seq);
  if (!CanLockAdj[max_idx][t]) {
    Printf("ThreadSanitizer: internal deadlock detected\n");
    Printf("ThreadSanitizer: can't lock %d while under %zu\n",
               t, (uptr)max_idx);
    CHECK(0);
  }
}

void InternalDeadlockDetector::Unlock(MutexType t) {
  // Printf("UNLO %d @%zu #%zu\n", t, seq_, locked_[t]);
  CHECK(locked_[t]);
  locked_[t] = 0;
}

void InternalDeadlockDetector::CheckNoLocks() {
  for (int i = 0; i != MutexTypeCount; i++) {
    CHECK_EQ(locked_[i], 0);
  }
}
#endif

void CheckNoLocks(ThreadState *thr) {
#if SANITIZER_DEBUG && !SANITIZER_GO
  thr->internal_deadlock_detector.CheckNoLocks();
#endif
}

const uptr kUnlocked = 0;
const uptr kWriteLock = 1;
const uptr kReadLock = 2;

class Backoff {
 public:
  Backoff()
    : iter_() {
  }

  bool Do() {
    if (iter_++ < kActiveSpinIters)
      proc_yield(kActiveSpinCnt);
    else
      internal_sched_yield();
    return true;
  }

  u64 Contention() const {
    u64 active = iter_ % kActiveSpinIters;
    u64 passive = iter_ - active;
    return active + 10 * passive;
  }

 private:
  int iter_;
  static const int kActiveSpinIters = 10;
  static const int kActiveSpinCnt = 20;
};

Mutex::Mutex(MutexType type, StatType stat_type) {
  CHECK_GT(type, MutexTypeInvalid);
  CHECK_LT(type, MutexTypeCount);
#if SANITIZER_DEBUG
  type_ = type;
#endif
#if TSAN_COLLECT_STATS
  stat_type_ = stat_type;
#endif
  atomic_store(&state_, kUnlocked, memory_order_relaxed);
}

Mutex::~Mutex() {
  CHECK_EQ(atomic_load(&state_, memory_order_relaxed), kUnlocked);
}

void Mutex::Lock() {
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Lock(type_);
#endif
  uptr cmp = kUnlocked;
  if (atomic_compare_exchange_strong(&state_, &cmp, kWriteLock,
                                     memory_order_acquire))
    return;
  for (Backoff backoff; backoff.Do();) {
    if (atomic_load(&state_, memory_order_relaxed) == kUnlocked) {
      cmp = kUnlocked;
      if (atomic_compare_exchange_weak(&state_, &cmp, kWriteLock,
                                       memory_order_acquire)) {
#if TSAN_COLLECT_STATS && !SANITIZER_GO
        StatInc(cur_thread(), stat_type_, backoff.Contention());
#endif
        return;
      }
    }
  }
}

void Mutex::Unlock() {
  uptr prev = atomic_fetch_sub(&state_, kWriteLock, memory_order_release);
  (void)prev;
  DCHECK_NE(prev & kWriteLock, 0);
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Unlock(type_);
#endif
}

void Mutex::ReadLock() {
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Lock(type_);
#endif
  uptr prev = atomic_fetch_add(&state_, kReadLock, memory_order_acquire);
  if ((prev & kWriteLock) == 0)
    return;
  for (Backoff backoff; backoff.Do();) {
    prev = atomic_load(&state_, memory_order_acquire);
    if ((prev & kWriteLock) == 0) {
#if TSAN_COLLECT_STATS && !SANITIZER_GO
      StatInc(cur_thread(), stat_type_, backoff.Contention());
#endif
      return;
    }
  }
}

void Mutex::ReadUnlock() {
  uptr prev = atomic_fetch_sub(&state_, kReadLock, memory_order_release);
  (void)prev;
  DCHECK_EQ(prev & kWriteLock, 0);
  DCHECK_GT(prev & ~kWriteLock, 0);
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Unlock(type_);
#endif
}

void Mutex::CheckLocked() {
  CHECK_NE(atomic_load(&state_, memory_order_relaxed), 0);
}

}  // namespace __tsan