reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
//===-- xray_allocator.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the allocator interface for an arena allocator, used primarily for
// the profiling runtime.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_ALLOCATOR_H
#define XRAY_ALLOCATOR_H

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_mutex.h"
#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#else
#include "sanitizer_common/sanitizer_posix.h"
#endif
#include "xray_defs.h"
#include "xray_utils.h"
#include <cstddef>
#include <cstdint>
#include <sys/mman.h>

namespace __xray {

// We implement our own memory allocation routine which will bypass the
// internal allocator. This allows us to manage the memory directly, using
// mmap'ed memory to back the allocators.
template <class T> T *allocate() XRAY_NEVER_INSTRUMENT {
  uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  zx_handle_t Vmo;
  zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to create VMO of size %zu: %s\n",
             sizeof(T), _zx_status_get_string(Status));
    return nullptr;
  }
  uintptr_t B;
  Status =
      _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
                   Vmo, 0, sizeof(T), &B);
  _zx_handle_close(Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", sizeof(T),
             _zx_status_get_string(Status));
    return nullptr;
  }
  return reinterpret_cast<T *>(B);
#else
  uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  int ErrNo = 0;
  if (UNLIKELY(internal_iserror(B, &ErrNo))) {
    if (Verbosity())
      Report(
          "XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
          RoundedSize, B);
    return nullptr;
  }
#endif
  return reinterpret_cast<T *>(B);
}

template <class T> void deallocate(T *B) XRAY_NEVER_INSTRUMENT {
  if (B == nullptr)
    return;
  uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  _zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
                 RoundedSize);
#else
  internal_munmap(B, RoundedSize);
#endif
}

template <class T = unsigned char>
T *allocateBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
  uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  zx_handle_t Vmo;
  zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to create VMO of size %zu: %s\n", S,
             _zx_status_get_string(Status));
    return nullptr;
  }
  uintptr_t B;
  Status = _zx_vmar_map(_zx_vmar_root_self(),
                        ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, Vmo, 0, S, &B);
  _zx_handle_close(Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", S,
             _zx_status_get_string(Status));
    return nullptr;
  }
#else
  uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  int ErrNo = 0;
  if (UNLIKELY(internal_iserror(B, &ErrNo))) {
    if (Verbosity())
      Report(
          "XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
          RoundedSize, B);
    return nullptr;
  }
#endif
  return reinterpret_cast<T *>(B);
}

template <class T> void deallocateBuffer(T *B, size_t S) XRAY_NEVER_INSTRUMENT {
  if (B == nullptr)
    return;
  uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  _zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
                 RoundedSize);
#else
  internal_munmap(B, RoundedSize);
#endif
}

template <class T, class... U>
T *initArray(size_t N, U &&... Us) XRAY_NEVER_INSTRUMENT {
  auto A = allocateBuffer<T>(N);
  if (A != nullptr)
    while (N > 0)
      new (A + (--N)) T(std::forward<U>(Us)...);
  return A;
}

/// The Allocator type hands out fixed-sized chunks of memory that are
/// cache-line aligned and sized. This is useful for placement of
/// performance-sensitive data in memory that's frequently accessed. The
/// allocator also self-limits the peak memory usage to a dynamically defined
/// maximum.
///
/// N is the lower-bound size of the block of memory to return from the
/// allocation function. N is used to compute the size of a block, which is
/// cache-line-size multiples worth of memory. We compute the size of a block by
/// determining how many cache lines worth of memory is required to subsume N.
///
/// The Allocator instance will manage its own memory acquired through mmap.
/// This severely constrains the platforms on which this can be used to POSIX
/// systems where mmap semantics are well-defined.
///
/// FIXME: Isolate the lower-level memory management to a different abstraction
/// that can be platform-specific.
template <size_t N> struct Allocator {
  // The Allocator returns memory as Block instances.
  struct Block {
    /// Compute the minimum cache-line size multiple that is >= N.
    static constexpr auto Size = nearest_boundary(N, kCacheLineSize);
    void *Data;
  };

private:
  size_t MaxMemory{0};
  unsigned char *BackingStore = nullptr;
  unsigned char *AlignedNextBlock = nullptr;
  size_t AllocatedBlocks = 0;
  bool Owned;
  SpinMutex Mutex{};

  void *Alloc() XRAY_NEVER_INSTRUMENT {
    SpinMutexLock Lock(&Mutex);
    if (UNLIKELY(BackingStore == nullptr)) {
      BackingStore = allocateBuffer(MaxMemory);
      if (BackingStore == nullptr) {
        if (Verbosity())
          Report("XRay Profiling: Failed to allocate memory for allocator.\n");
        return nullptr;
      }

      AlignedNextBlock = BackingStore;

      // Ensure that NextBlock is aligned appropriately.
      auto BackingStoreNum = reinterpret_cast<uintptr_t>(BackingStore);
      auto AlignedNextBlockNum = nearest_boundary(
          reinterpret_cast<uintptr_t>(AlignedNextBlock), kCacheLineSize);
      if (diff(AlignedNextBlockNum, BackingStoreNum) > ptrdiff_t(MaxMemory)) {
        deallocateBuffer(BackingStore, MaxMemory);
        AlignedNextBlock = BackingStore = nullptr;
        if (Verbosity())
          Report("XRay Profiling: Cannot obtain enough memory from "
                 "preallocated region.\n");
        return nullptr;
      }

      AlignedNextBlock = reinterpret_cast<unsigned char *>(AlignedNextBlockNum);

      // Assert that AlignedNextBlock is cache-line aligned.
      DCHECK_EQ(reinterpret_cast<uintptr_t>(AlignedNextBlock) % kCacheLineSize,
                0);
    }

    if (((AllocatedBlocks + 1) * Block::Size) > MaxMemory)
      return nullptr;

    // Align the pointer we'd like to return to an appropriate alignment, then
    // advance the pointer from where to start allocations.
    void *Result = AlignedNextBlock;
    AlignedNextBlock =
        reinterpret_cast<unsigned char *>(AlignedNextBlock) + Block::Size;
    ++AllocatedBlocks;
    return Result;
  }

public:
  explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
      : MaxMemory(RoundUpTo(M, kCacheLineSize)),
        BackingStore(nullptr),
        AlignedNextBlock(nullptr),
        AllocatedBlocks(0),
        Owned(true),
        Mutex() {}

  explicit Allocator(void *P, size_t M) XRAY_NEVER_INSTRUMENT
      : MaxMemory(M),
        BackingStore(reinterpret_cast<unsigned char *>(P)),
        AlignedNextBlock(reinterpret_cast<unsigned char *>(P)),
        AllocatedBlocks(0),
        Owned(false),
        Mutex() {}

  Allocator(const Allocator &) = delete;
  Allocator &operator=(const Allocator &) = delete;

  Allocator(Allocator &&O) XRAY_NEVER_INSTRUMENT {
    SpinMutexLock L0(&Mutex);
    SpinMutexLock L1(&O.Mutex);
    MaxMemory = O.MaxMemory;
    O.MaxMemory = 0;
    BackingStore = O.BackingStore;
    O.BackingStore = nullptr;
    AlignedNextBlock = O.AlignedNextBlock;
    O.AlignedNextBlock = nullptr;
    AllocatedBlocks = O.AllocatedBlocks;
    O.AllocatedBlocks = 0;
    Owned = O.Owned;
    O.Owned = false;
  }

  Allocator &operator=(Allocator &&O) XRAY_NEVER_INSTRUMENT {
    SpinMutexLock L0(&Mutex);
    SpinMutexLock L1(&O.Mutex);
    MaxMemory = O.MaxMemory;
    O.MaxMemory = 0;
    if (BackingStore != nullptr)
      deallocateBuffer(BackingStore, MaxMemory);
    BackingStore = O.BackingStore;
    O.BackingStore = nullptr;
    AlignedNextBlock = O.AlignedNextBlock;
    O.AlignedNextBlock = nullptr;
    AllocatedBlocks = O.AllocatedBlocks;
    O.AllocatedBlocks = 0;
    Owned = O.Owned;
    O.Owned = false;
    return *this;
  }

  Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }

  ~Allocator() NOEXCEPT XRAY_NEVER_INSTRUMENT {
    if (Owned && BackingStore != nullptr) {
      deallocateBuffer(BackingStore, MaxMemory);
    }
  }
};

} // namespace __xray

#endif // XRAY_ALLOCATOR_H