1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
| #include "cpuid.h"
#include "sanitizer_common/sanitizer_common.h"
#if !SANITIZER_FUCHSIA
#include "sanitizer_common/sanitizer_posix.h"
#endif
#include "xray_defs.h"
#include "xray_interface_internal.h"
#if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD || SANITIZER_MAC
#include <sys/types.h>
#if SANITIZER_OPENBSD
#include <sys/time.h>
#include <machine/cpu.h>
#endif
#include <sys/sysctl.h>
#elif SANITIZER_FUCHSIA
#include <zircon/syscalls.h>
#endif
#include <atomic>
#include <cstdint>
#include <errno.h>
#include <fcntl.h>
#include <iterator>
#include <limits>
#include <tuple>
#include <unistd.h>
namespace __xray {
#if SANITIZER_LINUX
static std::pair<ssize_t, bool>
retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT {
auto BytesToRead = std::distance(Begin, End);
ssize_t BytesRead;
ssize_t TotalBytesRead = 0;
while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) {
if (BytesRead == -1) {
if (errno == EINTR)
continue;
Report("Read error; errno = %d\n", errno);
return std::make_pair(TotalBytesRead, false);
}
TotalBytesRead += BytesRead;
BytesToRead -= BytesRead;
Begin += BytesRead;
}
return std::make_pair(TotalBytesRead, true);
}
static bool readValueFromFile(const char *Filename,
long long *Value) XRAY_NEVER_INSTRUMENT {
int Fd = open(Filename, O_RDONLY | O_CLOEXEC);
if (Fd == -1)
return false;
static constexpr size_t BufSize = 256;
char Line[BufSize] = {};
ssize_t BytesRead;
bool Success;
std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize);
close(Fd);
if (!Success)
return false;
const char *End = nullptr;
long long Tmp = internal_simple_strtoll(Line, &End, 10);
bool Result = false;
if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) {
*Value = Tmp;
Result = true;
}
return Result;
}
uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
long long TSCFrequency = -1;
if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz",
&TSCFrequency)) {
TSCFrequency *= 1000;
} else if (readValueFromFile(
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&TSCFrequency)) {
TSCFrequency *= 1000;
} else {
Report("Unable to determine CPU frequency for TSC accounting.\n");
}
return TSCFrequency == -1 ? 0 : static_cast<uint64_t>(TSCFrequency);
}
#elif SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD || SANITIZER_MAC
uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
long long TSCFrequency = -1;
size_t tscfreqsz = sizeof(TSCFrequency);
#if SANITIZER_OPENBSD
int Mib[2] = { CTL_MACHDEP, CPU_TSCFREQ };
if (internal_sysctl(Mib, 2, &TSCFrequency, &tscfreqsz, NULL, 0) != -1) {
#elif SANITIZER_MAC
if (internal_sysctlbyname("machdep.tsc.frequency", &TSCFrequency,
&tscfreqsz, NULL, 0) != -1) {
#else
if (internal_sysctlbyname("machdep.tsc_freq", &TSCFrequency, &tscfreqsz,
NULL, 0) != -1) {
#endif
return static_cast<uint64_t>(TSCFrequency);
} else {
Report("Unable to determine CPU frequency for TSC accounting.\n");
}
return 0;
}
#elif !SANITIZER_FUCHSIA
uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
/* Not supported */
return 0;
}
#endif
static constexpr uint8_t CallOpCode = 0xe8;
static constexpr uint16_t MovR10Seq = 0xba41;
static constexpr uint16_t Jmp9Seq = 0x09eb;
static constexpr uint16_t Jmp20Seq = 0x14eb;
static constexpr uint16_t Jmp15Seq = 0x0feb;
static constexpr uint8_t JmpOpCode = 0xe9;
static constexpr uint8_t RetOpCode = 0xc3;
static constexpr uint16_t NopwSeq = 0x9066;
static constexpr int64_t MinOffset{std::numeric_limits<int32_t>::min()};
static constexpr int64_t MaxOffset{std::numeric_limits<int32_t>::max()};
bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
void (*Trampoline)()) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// xray_sled_n:
// jmp +9
// <9 byte nop>
//
// With the following:
//
// mov r10d, <function id>
// call <relative 32bit offset to entry trampoline>
//
// We need to do this in the following order:
//
// 1. Put the function id first, 2 bytes from the start of the sled (just
// after the 2-byte jmp instruction).
// 2. Put the call opcode 6 bytes from the start of the sled.
// 3. Put the relative offset 7 bytes from the start of the sled.
// 4. Do an atomic write over the jmp instruction for the "mov r10d"
// opcode and first operand.
//
// Prerequisite is to compute the relative offset to the trampoline's address.
int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) -
(static_cast<int64_t>(Sled.Address) + 11);
if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
Report("XRay Entry trampoline (%p) too far from sled (%p)\n",
Trampoline, reinterpret_cast<void *>(Sled.Address));
return false;
}
if (Enable) {
*reinterpret_cast<uint32_t *>(Sled.Address + 2) = FuncId;
*reinterpret_cast<uint8_t *>(Sled.Address + 6) = CallOpCode;
*reinterpret_cast<uint32_t *>(Sled.Address + 7) = TrampolineOffset;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), MovR10Seq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp9Seq,
std::memory_order_release);
// FIXME: Write out the nops still?
}
return true;
}
bool patchFunctionExit(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// xray_sled_n:
// ret
// <10 byte nop>
//
// With the following:
//
// mov r10d, <function id>
// jmp <relative 32bit offset to exit trampoline>
//
// 1. Put the function id first, 2 bytes from the start of the sled (just
// after the 1-byte ret instruction).
// 2. Put the jmp opcode 6 bytes from the start of the sled.
// 3. Put the relative offset 7 bytes from the start of the sled.
// 4. Do an atomic write over the jmp instruction for the "mov r10d"
// opcode and first operand.
//
// Prerequisite is to compute the relative offset fo the
// __xray_FunctionExit function's address.
int64_t TrampolineOffset = reinterpret_cast<int64_t>(__xray_FunctionExit) -
(static_cast<int64_t>(Sled.Address) + 11);
if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
Report("XRay Exit trampoline (%p) too far from sled (%p)\n",
__xray_FunctionExit, reinterpret_cast<void *>(Sled.Address));
return false;
}
if (Enable) {
*reinterpret_cast<uint32_t *>(Sled.Address + 2) = FuncId;
*reinterpret_cast<uint8_t *>(Sled.Address + 6) = JmpOpCode;
*reinterpret_cast<uint32_t *>(Sled.Address + 7) = TrampolineOffset;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), MovR10Seq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint8_t> *>(Sled.Address), RetOpCode,
std::memory_order_release);
// FIXME: Write out the nops still?
}
return true;
}
bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the tail call sled with a similar
// sequence as the entry sled, but calls the tail exit sled instead.
int64_t TrampolineOffset =
reinterpret_cast<int64_t>(__xray_FunctionTailExit) -
(static_cast<int64_t>(Sled.Address) + 11);
if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
Report("XRay Tail Exit trampoline (%p) too far from sled (%p)\n",
__xray_FunctionTailExit, reinterpret_cast<void *>(Sled.Address));
return false;
}
if (Enable) {
*reinterpret_cast<uint32_t *>(Sled.Address + 2) = FuncId;
*reinterpret_cast<uint8_t *>(Sled.Address + 6) = CallOpCode;
*reinterpret_cast<uint32_t *>(Sled.Address + 7) = TrampolineOffset;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), MovR10Seq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp9Seq,
std::memory_order_release);
// FIXME: Write out the nops still?
}
return true;
}
bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// In Version 0:
//
// xray_sled_n:
// jmp +20 // 2 bytes
// ...
//
// With the following:
//
// nopw // 2 bytes*
// ...
//
//
// The "unpatch" should just turn the 'nopw' back to a 'jmp +20'.
//
// ---
//
// In Version 1:
//
// The jump offset is now 15 bytes (0x0f), so when restoring the nopw back
// to a jmp, use 15 bytes instead.
//
if (Enable) {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), NopwSeq,
std::memory_order_release);
} else {
switch (Sled.Version) {
case 1:
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp15Seq,
std::memory_order_release);
break;
case 0:
default:
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp20Seq,
std::memory_order_release);
break;
}
}
return false;
}
bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// xray_sled_n:
// jmp +20 // 2 byte instruction
// ...
//
// With the following:
//
// nopw // 2 bytes
// ...
//
//
// The "unpatch" should just turn the 'nopw' back to a 'jmp +20'.
// The 20 byte sled stashes three argument registers, calls the trampoline,
// unstashes the registers and returns. If the arguments are already in
// the correct registers, the stashing and unstashing become equivalently
// sized nops.
if (Enable) {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), NopwSeq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp20Seq,
std::memory_order_release);
}
return false;
}
#if !SANITIZER_FUCHSIA
// We determine whether the CPU we're running on has the correct features we
// need. In x86_64 this will be rdtscp support.
bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT {
unsigned int EAX, EBX, ECX, EDX;
// We check whether rdtscp support is enabled. According to the x86_64 manual,
// level should be set at 0x80000001, and we should have a look at bit 27 in
// EDX. That's 0x8000000 (or 1u << 27).
__asm__ __volatile__("cpuid" : "=a"(EAX), "=b"(EBX), "=c"(ECX), "=d"(EDX)
: "0"(0x80000001));
if (!(EDX & (1u << 27))) {
Report("Missing rdtscp support.\n");
return false;
}
// Also check whether we can determine the CPU frequency, since if we cannot,
// we should use the emulated TSC instead.
if (!getTSCFrequency()) {
Report("Unable to determine CPU frequency.\n");
return false;
}
return true;
}
#endif
} // namespace __xray
|