reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Expr.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
using namespace clang;

const Expr *Expr::getBestDynamicClassTypeExpr() const {
  const Expr *E = this;
  while (true) {
    E = E->ignoreParenBaseCasts();

    // Follow the RHS of a comma operator.
    if (auto *BO = dyn_cast<BinaryOperator>(E)) {
      if (BO->getOpcode() == BO_Comma) {
        E = BO->getRHS();
        continue;
      }
    }

    // Step into initializer for materialized temporaries.
    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = MTE->GetTemporaryExpr();
      continue;
    }

    break;
  }

  return E;
}

const CXXRecordDecl *Expr::getBestDynamicClassType() const {
  const Expr *E = getBestDynamicClassTypeExpr();
  QualType DerivedType = E->getType();
  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
    DerivedType = PTy->getPointeeType();

  if (DerivedType->isDependentType())
    return nullptr;

  const RecordType *Ty = DerivedType->castAs<RecordType>();
  Decl *D = Ty->getDecl();
  return cast<CXXRecordDecl>(D);
}

const Expr *Expr::skipRValueSubobjectAdjustments(
    SmallVectorImpl<const Expr *> &CommaLHSs,
    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
  const Expr *E = this;
  while (true) {
    E = E->IgnoreParens();

    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
      if ((CE->getCastKind() == CK_DerivedToBase ||
           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
          E->getType()->isRecordType()) {
        E = CE->getSubExpr();
        auto *Derived =
            cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
        continue;
      }

      if (CE->getCastKind() == CK_NoOp) {
        E = CE->getSubExpr();
        continue;
      }
    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
      if (!ME->isArrow()) {
        assert(ME->getBase()->getType()->isRecordType());
        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
            E = ME->getBase();
            Adjustments.push_back(SubobjectAdjustment(Field));
            continue;
          }
        }
      }
    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
      if (BO->getOpcode() == BO_PtrMemD) {
        assert(BO->getRHS()->isRValue());
        E = BO->getLHS();
        const MemberPointerType *MPT =
          BO->getRHS()->getType()->getAs<MemberPointerType>();
        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
        continue;
      } else if (BO->getOpcode() == BO_Comma) {
        CommaLHSs.push_back(BO->getLHS());
        E = BO->getRHS();
        continue;
      }
    }

    // Nothing changed.
    break;
  }
  return E;
}

/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool Expr::isKnownToHaveBooleanValue() const {
  const Expr *E = IgnoreParens();

  // If this value has _Bool type, it is obvious 0/1.
  if (E->getType()->isBooleanType()) return true;
  // If this is a non-scalar-integer type, we don't care enough to try.
  if (!E->getType()->isIntegralOrEnumerationType()) return false;

  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    switch (UO->getOpcode()) {
    case UO_Plus:
      return UO->getSubExpr()->isKnownToHaveBooleanValue();
    case UO_LNot:
      return true;
    default:
      return false;
    }
  }

  // Only look through implicit casts.  If the user writes
  // '(int) (a && b)' treat it as an arbitrary int.
  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
    return CE->getSubExpr()->isKnownToHaveBooleanValue();

  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    switch (BO->getOpcode()) {
    default: return false;
    case BO_LT:   // Relational operators.
    case BO_GT:
    case BO_LE:
    case BO_GE:
    case BO_EQ:   // Equality operators.
    case BO_NE:
    case BO_LAnd: // AND operator.
    case BO_LOr:  // Logical OR operator.
      return true;

    case BO_And:  // Bitwise AND operator.
    case BO_Xor:  // Bitwise XOR operator.
    case BO_Or:   // Bitwise OR operator.
      // Handle things like (x==2)|(y==12).
      return BO->getLHS()->isKnownToHaveBooleanValue() &&
             BO->getRHS()->isKnownToHaveBooleanValue();

    case BO_Comma:
    case BO_Assign:
      return BO->getRHS()->isKnownToHaveBooleanValue();
    }
  }

  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
           CO->getFalseExpr()->isKnownToHaveBooleanValue();

  if (isa<ObjCBoolLiteralExpr>(E))
    return true;

  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
    return OVE->getSourceExpr()->isKnownToHaveBooleanValue();

  return false;
}

// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getExprLoc().
//
// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
namespace {
  /// This implementation is used when a class provides a custom
  /// implementation of getExprLoc.
  template <class E, class T>
  SourceLocation getExprLocImpl(const Expr *expr,
                                SourceLocation (T::*v)() const) {
    return static_cast<const E*>(expr)->getExprLoc();
  }

  /// This implementation is used when a class doesn't provide
  /// a custom implementation of getExprLoc.  Overload resolution
  /// should pick it over the implementation above because it's
  /// more specialized according to function template partial ordering.
  template <class E>
  SourceLocation getExprLocImpl(const Expr *expr,
                                SourceLocation (Expr::*v)() const) {
    return static_cast<const E *>(expr)->getBeginLoc();
  }
}

SourceLocation Expr::getExprLoc() const {
  switch (getStmtClass()) {
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
  case Stmt::type##Class: break;
#define EXPR(type, base) \
  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
#include "clang/AST/StmtNodes.inc"
  }
  llvm_unreachable("unknown expression kind");
}

//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//

static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
  assert((Kind == ConstantExpr::RSK_APValue ||
          Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
         "Invalid StorageKind Value");
}

ConstantExpr::ResultStorageKind
ConstantExpr::getStorageKind(const APValue &Value) {
  switch (Value.getKind()) {
  case APValue::None:
  case APValue::Indeterminate:
    return ConstantExpr::RSK_None;
  case APValue::Int:
    if (!Value.getInt().needsCleanup())
      return ConstantExpr::RSK_Int64;
    LLVM_FALLTHROUGH;
  default:
    return ConstantExpr::RSK_APValue;
  }
}

ConstantExpr::ResultStorageKind
ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
  if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
    return ConstantExpr::RSK_Int64;
  return ConstantExpr::RSK_APValue;
}

void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
  ConstantExprBits.ResultKind = StorageKind;
  ConstantExprBits.APValueKind = APValue::None;
  ConstantExprBits.HasCleanup = false;
  if (StorageKind == ConstantExpr::RSK_APValue)
    ::new (getTrailingObjects<APValue>()) APValue();
}

ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
    : FullExpr(ConstantExprClass, subexpr) {
  DefaultInit(StorageKind);
}

ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
                                   ResultStorageKind StorageKind) {
  assert(!isa<ConstantExpr>(E));
  AssertResultStorageKind(StorageKind);
  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
      StorageKind == ConstantExpr::RSK_APValue,
      StorageKind == ConstantExpr::RSK_Int64);
  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
  ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
  return Self;
}

ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
                                   const APValue &Result) {
  ResultStorageKind StorageKind = getStorageKind(Result);
  ConstantExpr *Self = Create(Context, E, StorageKind);
  Self->SetResult(Result, Context);
  return Self;
}

ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
    : FullExpr(ConstantExprClass, Empty) {
  DefaultInit(StorageKind);
}

ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
                                        ResultStorageKind StorageKind,
                                        EmptyShell Empty) {
  AssertResultStorageKind(StorageKind);
  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
      StorageKind == ConstantExpr::RSK_APValue,
      StorageKind == ConstantExpr::RSK_Int64);
  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
  ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
  return Self;
}

void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
  assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
         "Invalid storage for this value kind");
  ConstantExprBits.APValueKind = Value.getKind();
  switch (ConstantExprBits.ResultKind) {
  case RSK_None:
    return;
  case RSK_Int64:
    Int64Result() = *Value.getInt().getRawData();
    ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
    ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
    return;
  case RSK_APValue:
    if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
      ConstantExprBits.HasCleanup = true;
      Context.addDestruction(&APValueResult());
    }
    APValueResult() = std::move(Value);
    return;
  }
  llvm_unreachable("Invalid ResultKind Bits");
}

llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
  switch (ConstantExprBits.ResultKind) {
  case ConstantExpr::RSK_APValue:
    return APValueResult().getInt();
  case ConstantExpr::RSK_Int64:
    return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
                        ConstantExprBits.IsUnsigned);
  default:
    llvm_unreachable("invalid Accessor");
  }
}

APValue ConstantExpr::getAPValueResult() const {
  switch (ConstantExprBits.ResultKind) {
  case ConstantExpr::RSK_APValue:
    return APValueResult();
  case ConstantExpr::RSK_Int64:
    return APValue(
        llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
                     ConstantExprBits.IsUnsigned));
  case ConstantExpr::RSK_None:
    return APValue();
  }
  llvm_unreachable("invalid ResultKind");
}

/// Compute the type-, value-, and instantiation-dependence of a
/// declaration reference
/// based on the declaration being referenced.
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
                                     QualType T, bool &TypeDependent,
                                     bool &ValueDependent,
                                     bool &InstantiationDependent) {
  TypeDependent = false;
  ValueDependent = false;
  InstantiationDependent = false;

  // (TD) C++ [temp.dep.expr]p3:
  //   An id-expression is type-dependent if it contains:
  //
  // and
  //
  // (VD) C++ [temp.dep.constexpr]p2:
  //  An identifier is value-dependent if it is:

  //  (TD)  - an identifier that was declared with dependent type
  //  (VD)  - a name declared with a dependent type,
  if (T->isDependentType()) {
    TypeDependent = true;
    ValueDependent = true;
    InstantiationDependent = true;
    return;
  } else if (T->isInstantiationDependentType()) {
    InstantiationDependent = true;
  }

  //  (TD)  - a conversion-function-id that specifies a dependent type
  if (D->getDeclName().getNameKind()
                                == DeclarationName::CXXConversionFunctionName) {
    QualType T = D->getDeclName().getCXXNameType();
    if (T->isDependentType()) {
      TypeDependent = true;
      ValueDependent = true;
      InstantiationDependent = true;
      return;
    }

    if (T->isInstantiationDependentType())
      InstantiationDependent = true;
  }

  //  (VD)  - the name of a non-type template parameter,
  if (isa<NonTypeTemplateParmDecl>(D)) {
    ValueDependent = true;
    InstantiationDependent = true;
    return;
  }

  //  (VD) - a constant with integral or enumeration type and is
  //         initialized with an expression that is value-dependent.
  //  (VD) - a constant with literal type and is initialized with an
  //         expression that is value-dependent [C++11].
  //  (VD) - FIXME: Missing from the standard:
  //       -  an entity with reference type and is initialized with an
  //          expression that is value-dependent [C++11]
  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    if ((Ctx.getLangOpts().CPlusPlus11 ?
           Var->getType()->isLiteralType(Ctx) :
           Var->getType()->isIntegralOrEnumerationType()) &&
        (Var->getType().isConstQualified() ||
         Var->getType()->isReferenceType())) {
      if (const Expr *Init = Var->getAnyInitializer())
        if (Init->isValueDependent()) {
          ValueDependent = true;
          InstantiationDependent = true;
        }
    }

    // (VD) - FIXME: Missing from the standard:
    //      -  a member function or a static data member of the current
    //         instantiation
    if (Var->isStaticDataMember() &&
        Var->getDeclContext()->isDependentContext()) {
      ValueDependent = true;
      InstantiationDependent = true;
      TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
      if (TInfo->getType()->isIncompleteArrayType())
        TypeDependent = true;
    }

    return;
  }

  // (VD) - FIXME: Missing from the standard:
  //      -  a member function or a static data member of the current
  //         instantiation
  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    ValueDependent = true;
    InstantiationDependent = true;
  }
}

void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
  bool TypeDependent = false;
  bool ValueDependent = false;
  bool InstantiationDependent = false;
  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
                           ValueDependent, InstantiationDependent);

  ExprBits.TypeDependent |= TypeDependent;
  ExprBits.ValueDependent |= ValueDependent;
  ExprBits.InstantiationDependent |= InstantiationDependent;

  // Is the declaration a parameter pack?
  if (getDecl()->isParameterPack())
    ExprBits.ContainsUnexpandedParameterPack = true;
}

DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
                         bool RefersToEnclosingVariableOrCapture, QualType T,
                         ExprValueKind VK, SourceLocation L,
                         const DeclarationNameLoc &LocInfo,
                         NonOdrUseReason NOUR)
    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
      D(D), DNLoc(LocInfo) {
  DeclRefExprBits.HasQualifier = false;
  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
  DeclRefExprBits.HasFoundDecl = false;
  DeclRefExprBits.HadMultipleCandidates = false;
  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
      RefersToEnclosingVariableOrCapture;
  DeclRefExprBits.NonOdrUseReason = NOUR;
  DeclRefExprBits.Loc = L;
  computeDependence(Ctx);
}

DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
                         NestedNameSpecifierLoc QualifierLoc,
                         SourceLocation TemplateKWLoc, ValueDecl *D,
                         bool RefersToEnclosingVariableOrCapture,
                         const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
                         const TemplateArgumentListInfo *TemplateArgs,
                         QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
      D(D), DNLoc(NameInfo.getInfo()) {
  DeclRefExprBits.Loc = NameInfo.getLoc();
  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
  if (QualifierLoc) {
    new (getTrailingObjects<NestedNameSpecifierLoc>())
        NestedNameSpecifierLoc(QualifierLoc);
    auto *NNS = QualifierLoc.getNestedNameSpecifier();
    if (NNS->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (NNS->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;
  }
  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
  if (FoundD)
    *getTrailingObjects<NamedDecl *>() = FoundD;
  DeclRefExprBits.HasTemplateKWAndArgsInfo
    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
      RefersToEnclosingVariableOrCapture;
  DeclRefExprBits.NonOdrUseReason = NOUR;
  if (TemplateArgs) {
    bool Dependent = false;
    bool InstantiationDependent = false;
    bool ContainsUnexpandedParameterPack = false;
    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
        Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
    assert(!Dependent && "built a DeclRefExpr with dependent template args");
    ExprBits.InstantiationDependent |= InstantiationDependent;
    ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
  } else if (TemplateKWLoc.isValid()) {
    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc);
  }
  DeclRefExprBits.HadMultipleCandidates = 0;

  computeDependence(Ctx);
}

DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
                                 NestedNameSpecifierLoc QualifierLoc,
                                 SourceLocation TemplateKWLoc, ValueDecl *D,
                                 bool RefersToEnclosingVariableOrCapture,
                                 SourceLocation NameLoc, QualType T,
                                 ExprValueKind VK, NamedDecl *FoundD,
                                 const TemplateArgumentListInfo *TemplateArgs,
                                 NonOdrUseReason NOUR) {
  return Create(Context, QualifierLoc, TemplateKWLoc, D,
                RefersToEnclosingVariableOrCapture,
                DeclarationNameInfo(D->getDeclName(), NameLoc),
                T, VK, FoundD, TemplateArgs, NOUR);
}

DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
                                 NestedNameSpecifierLoc QualifierLoc,
                                 SourceLocation TemplateKWLoc, ValueDecl *D,
                                 bool RefersToEnclosingVariableOrCapture,
                                 const DeclarationNameInfo &NameInfo,
                                 QualType T, ExprValueKind VK,
                                 NamedDecl *FoundD,
                                 const TemplateArgumentListInfo *TemplateArgs,
                                 NonOdrUseReason NOUR) {
  // Filter out cases where the found Decl is the same as the value refenenced.
  if (D == FoundD)
    FoundD = nullptr;

  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  std::size_t Size =
      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
          QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
          HasTemplateKWAndArgsInfo ? 1 : 0,
          TemplateArgs ? TemplateArgs->size() : 0);

  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
                               RefersToEnclosingVariableOrCapture, NameInfo,
                               FoundD, TemplateArgs, T, VK, NOUR);
}

DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
                                      bool HasQualifier,
                                      bool HasFoundDecl,
                                      bool HasTemplateKWAndArgsInfo,
                                      unsigned NumTemplateArgs) {
  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
  std::size_t Size =
      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
          HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
          NumTemplateArgs);
  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  return new (Mem) DeclRefExpr(EmptyShell());
}

SourceLocation DeclRefExpr::getBeginLoc() const {
  if (hasQualifier())
    return getQualifierLoc().getBeginLoc();
  return getNameInfo().getBeginLoc();
}
SourceLocation DeclRefExpr::getEndLoc() const {
  if (hasExplicitTemplateArgs())
    return getRAngleLoc();
  return getNameInfo().getEndLoc();
}

PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
                               StringLiteral *SL)
    : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
           FNTy->isDependentType(), FNTy->isDependentType(),
           FNTy->isInstantiationDependentType(),
           /*ContainsUnexpandedParameterPack=*/false) {
  PredefinedExprBits.Kind = IK;
  assert((getIdentKind() == IK) &&
         "IdentKind do not fit in PredefinedExprBitfields!");
  bool HasFunctionName = SL != nullptr;
  PredefinedExprBits.HasFunctionName = HasFunctionName;
  PredefinedExprBits.Loc = L;
  if (HasFunctionName)
    setFunctionName(SL);
}

PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
    : Expr(PredefinedExprClass, Empty) {
  PredefinedExprBits.HasFunctionName = HasFunctionName;
}

PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
                                       QualType FNTy, IdentKind IK,
                                       StringLiteral *SL) {
  bool HasFunctionName = SL != nullptr;
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
                           alignof(PredefinedExpr));
  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
}

PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
                                            bool HasFunctionName) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
                           alignof(PredefinedExpr));
  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
}

StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
  switch (IK) {
  case Func:
    return "__func__";
  case Function:
    return "__FUNCTION__";
  case FuncDName:
    return "__FUNCDNAME__";
  case LFunction:
    return "L__FUNCTION__";
  case PrettyFunction:
    return "__PRETTY_FUNCTION__";
  case FuncSig:
    return "__FUNCSIG__";
  case LFuncSig:
    return "L__FUNCSIG__";
  case PrettyFunctionNoVirtual:
    break;
  }
  llvm_unreachable("Unknown ident kind for PredefinedExpr");
}

// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
  ASTContext &Context = CurrentDecl->getASTContext();

  if (IK == PredefinedExpr::FuncDName) {
    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
      std::unique_ptr<MangleContext> MC;
      MC.reset(Context.createMangleContext());

      if (MC->shouldMangleDeclName(ND)) {
        SmallString<256> Buffer;
        llvm::raw_svector_ostream Out(Buffer);
        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
          MC->mangleCXXCtor(CD, Ctor_Base, Out);
        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
          MC->mangleCXXDtor(DD, Dtor_Base, Out);
        else
          MC->mangleName(ND, Out);

        if (!Buffer.empty() && Buffer.front() == '\01')
          return Buffer.substr(1);
        return Buffer.str();
      } else
        return ND->getIdentifier()->getName();
    }
    return "";
  }
  if (isa<BlockDecl>(CurrentDecl)) {
    // For blocks we only emit something if it is enclosed in a function
    // For top-level block we'd like to include the name of variable, but we
    // don't have it at this point.
    auto DC = CurrentDecl->getDeclContext();
    if (DC->isFileContext())
      return "";

    SmallString<256> Buffer;
    llvm::raw_svector_ostream Out(Buffer);
    if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
      // For nested blocks, propagate up to the parent.
      Out << ComputeName(IK, DCBlock);
    else if (auto *DCDecl = dyn_cast<Decl>(DC))
      Out << ComputeName(IK, DCDecl) << "_block_invoke";
    return Out.str();
  }
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
        IK != FuncSig && IK != LFuncSig)
      return FD->getNameAsString();

    SmallString<256> Name;
    llvm::raw_svector_ostream Out(Name);

    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
        Out << "virtual ";
      if (MD->isStatic())
        Out << "static ";
    }

    PrintingPolicy Policy(Context.getLangOpts());
    std::string Proto;
    llvm::raw_string_ostream POut(Proto);

    const FunctionDecl *Decl = FD;
    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
      Decl = Pattern;
    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
    const FunctionProtoType *FT = nullptr;
    if (FD->hasWrittenPrototype())
      FT = dyn_cast<FunctionProtoType>(AFT);

    if (IK == FuncSig || IK == LFuncSig) {
      switch (AFT->getCallConv()) {
      case CC_C: POut << "__cdecl "; break;
      case CC_X86StdCall: POut << "__stdcall "; break;
      case CC_X86FastCall: POut << "__fastcall "; break;
      case CC_X86ThisCall: POut << "__thiscall "; break;
      case CC_X86VectorCall: POut << "__vectorcall "; break;
      case CC_X86RegCall: POut << "__regcall "; break;
      // Only bother printing the conventions that MSVC knows about.
      default: break;
      }
    }

    FD->printQualifiedName(POut, Policy);

    POut << "(";
    if (FT) {
      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
        if (i) POut << ", ";
        POut << Decl->getParamDecl(i)->getType().stream(Policy);
      }

      if (FT->isVariadic()) {
        if (FD->getNumParams()) POut << ", ";
        POut << "...";
      } else if ((IK == FuncSig || IK == LFuncSig ||
                  !Context.getLangOpts().CPlusPlus) &&
                 !Decl->getNumParams()) {
        POut << "void";
      }
    }
    POut << ")";

    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      assert(FT && "We must have a written prototype in this case.");
      if (FT->isConst())
        POut << " const";
      if (FT->isVolatile())
        POut << " volatile";
      RefQualifierKind Ref = MD->getRefQualifier();
      if (Ref == RQ_LValue)
        POut << " &";
      else if (Ref == RQ_RValue)
        POut << " &&";
    }

    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
    SpecsTy Specs;
    const DeclContext *Ctx = FD->getDeclContext();
    while (Ctx && isa<NamedDecl>(Ctx)) {
      const ClassTemplateSpecializationDecl *Spec
                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
      if (Spec && !Spec->isExplicitSpecialization())
        Specs.push_back(Spec);
      Ctx = Ctx->getParent();
    }

    std::string TemplateParams;
    llvm::raw_string_ostream TOut(TemplateParams);
    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
         I != E; ++I) {
      const TemplateParameterList *Params
                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
      assert(Params->size() == Args.size());
      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
        StringRef Param = Params->getParam(i)->getName();
        if (Param.empty()) continue;
        TOut << Param << " = ";
        Args.get(i).print(Policy, TOut);
        TOut << ", ";
      }
    }

    FunctionTemplateSpecializationInfo *FSI
                                          = FD->getTemplateSpecializationInfo();
    if (FSI && !FSI->isExplicitSpecialization()) {
      const TemplateParameterList* Params
                                  = FSI->getTemplate()->getTemplateParameters();
      const TemplateArgumentList* Args = FSI->TemplateArguments;
      assert(Params->size() == Args->size());
      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
        StringRef Param = Params->getParam(i)->getName();
        if (Param.empty()) continue;
        TOut << Param << " = ";
        Args->get(i).print(Policy, TOut);
        TOut << ", ";
      }
    }

    TOut.flush();
    if (!TemplateParams.empty()) {
      // remove the trailing comma and space
      TemplateParams.resize(TemplateParams.size() - 2);
      POut << " [" << TemplateParams << "]";
    }

    POut.flush();

    // Print "auto" for all deduced return types. This includes C++1y return
    // type deduction and lambdas. For trailing return types resolve the
    // decltype expression. Otherwise print the real type when this is
    // not a constructor or destructor.
    if (isa<CXXMethodDecl>(FD) &&
         cast<CXXMethodDecl>(FD)->getParent()->isLambda())
      Proto = "auto " + Proto;
    else if (FT && FT->getReturnType()->getAs<DecltypeType>())
      FT->getReturnType()
          ->getAs<DecltypeType>()
          ->getUnderlyingType()
          .getAsStringInternal(Proto, Policy);
    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
      AFT->getReturnType().getAsStringInternal(Proto, Policy);

    Out << Proto;

    return Name.str().str();
  }
  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
      // Skip to its enclosing function or method, but not its enclosing
      // CapturedDecl.
      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
        const Decl *D = Decl::castFromDeclContext(DC);
        return ComputeName(IK, D);
      }
    llvm_unreachable("CapturedDecl not inside a function or method");
  }
  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    SmallString<256> Name;
    llvm::raw_svector_ostream Out(Name);
    Out << (MD->isInstanceMethod() ? '-' : '+');
    Out << '[';

    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    // a null check to avoid a crash.
    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
      Out << *ID;

    if (const ObjCCategoryImplDecl *CID =
        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
      Out << '(' << *CID << ')';

    Out <<  ' ';
    MD->getSelector().print(Out);
    Out <<  ']';

    return Name.str().str();
  }
  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    return "top level";
  }
  return "";
}

void APNumericStorage::setIntValue(const ASTContext &C,
                                   const llvm::APInt &Val) {
  if (hasAllocation())
    C.Deallocate(pVal);

  BitWidth = Val.getBitWidth();
  unsigned NumWords = Val.getNumWords();
  const uint64_t* Words = Val.getRawData();
  if (NumWords > 1) {
    pVal = new (C) uint64_t[NumWords];
    std::copy(Words, Words + NumWords, pVal);
  } else if (NumWords == 1)
    VAL = Words[0];
  else
    VAL = 0;
}

IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
                               QualType type, SourceLocation l)
  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
         false, false),
    Loc(l) {
  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  assert(V.getBitWidth() == C.getIntWidth(type) &&
         "Integer type is not the correct size for constant.");
  setValue(C, V);
}

IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
                       QualType type, SourceLocation l) {
  return new (C) IntegerLiteral(C, V, type, l);
}

IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  return new (C) IntegerLiteral(Empty);
}

FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
                                     QualType type, SourceLocation l,
                                     unsigned Scale)
    : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
           false, false),
      Loc(l), Scale(Scale) {
  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
         "Fixed point type is not the correct size for constant.");
  setValue(C, V);
}

FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
                                                       const llvm::APInt &V,
                                                       QualType type,
                                                       SourceLocation l,
                                                       unsigned Scale) {
  return new (C) FixedPointLiteral(C, V, type, l, Scale);
}

std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
  // Currently the longest decimal number that can be printed is the max for an
  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
  // which is 43 characters.
  SmallString<64> S;
  FixedPointValueToString(
      S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
  return S.str();
}

FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
                                 bool isexact, QualType Type, SourceLocation L)
  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
         false, false), Loc(L) {
  setSemantics(V.getSemantics());
  FloatingLiteralBits.IsExact = isexact;
  setValue(C, V);
}

FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
  : Expr(FloatingLiteralClass, Empty) {
  setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
  FloatingLiteralBits.IsExact = false;
}

FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
                        bool isexact, QualType Type, SourceLocation L) {
  return new (C) FloatingLiteral(C, V, isexact, Type, L);
}

FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  return new (C) FloatingLiteral(C, Empty);
}

/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double.  Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
  llvm::APFloat V = getValue();
  bool ignored;
  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
            &ignored);
  return V.convertToDouble();
}

unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
                                         StringKind SK) {
  unsigned CharByteWidth = 0;
  switch (SK) {
  case Ascii:
  case UTF8:
    CharByteWidth = Target.getCharWidth();
    break;
  case Wide:
    CharByteWidth = Target.getWCharWidth();
    break;
  case UTF16:
    CharByteWidth = Target.getChar16Width();
    break;
  case UTF32:
    CharByteWidth = Target.getChar32Width();
    break;
  }
  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
  CharByteWidth /= 8;
  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
         "The only supported character byte widths are 1,2 and 4!");
  return CharByteWidth;
}

StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
                             StringKind Kind, bool Pascal, QualType Ty,
                             const SourceLocation *Loc,
                             unsigned NumConcatenated)
    : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
           false) {
  assert(Ctx.getAsConstantArrayType(Ty) &&
         "StringLiteral must be of constant array type!");
  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
  unsigned ByteLength = Str.size();
  assert((ByteLength % CharByteWidth == 0) &&
         "The size of the data must be a multiple of CharByteWidth!");

  // Avoid the expensive division. The compiler should be able to figure it
  // out by itself. However as of clang 7, even with the appropriate
  // llvm_unreachable added just here, it is not able to do so.
  unsigned Length;
  switch (CharByteWidth) {
  case 1:
    Length = ByteLength;
    break;
  case 2:
    Length = ByteLength / 2;
    break;
  case 4:
    Length = ByteLength / 4;
    break;
  default:
    llvm_unreachable("Unsupported character width!");
  }

  StringLiteralBits.Kind = Kind;
  StringLiteralBits.CharByteWidth = CharByteWidth;
  StringLiteralBits.IsPascal = Pascal;
  StringLiteralBits.NumConcatenated = NumConcatenated;
  *getTrailingObjects<unsigned>() = Length;

  // Initialize the trailing array of SourceLocation.
  // This is safe since SourceLocation is POD-like.
  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
              NumConcatenated * sizeof(SourceLocation));

  // Initialize the trailing array of char holding the string data.
  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
}

StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
                             unsigned Length, unsigned CharByteWidth)
    : Expr(StringLiteralClass, Empty) {
  StringLiteralBits.CharByteWidth = CharByteWidth;
  StringLiteralBits.NumConcatenated = NumConcatenated;
  *getTrailingObjects<unsigned>() = Length;
}

StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
                                     StringKind Kind, bool Pascal, QualType Ty,
                                     const SourceLocation *Loc,
                                     unsigned NumConcatenated) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
                               1, NumConcatenated, Str.size()),
                           alignof(StringLiteral));
  return new (Mem)
      StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
}

StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
                                          unsigned NumConcatenated,
                                          unsigned Length,
                                          unsigned CharByteWidth) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
                               1, NumConcatenated, Length * CharByteWidth),
                           alignof(StringLiteral));
  return new (Mem)
      StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
}

void StringLiteral::outputString(raw_ostream &OS) const {
  switch (getKind()) {
  case Ascii: break; // no prefix.
  case Wide:  OS << 'L'; break;
  case UTF8:  OS << "u8"; break;
  case UTF16: OS << 'u'; break;
  case UTF32: OS << 'U'; break;
  }
  OS << '"';
  static const char Hex[] = "0123456789ABCDEF";

  unsigned LastSlashX = getLength();
  for (unsigned I = 0, N = getLength(); I != N; ++I) {
    switch (uint32_t Char = getCodeUnit(I)) {
    default:
      // FIXME: Convert UTF-8 back to codepoints before rendering.

      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
      // Leave invalid surrogates alone; we'll use \x for those.
      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
          Char <= 0xdbff) {
        uint32_t Trail = getCodeUnit(I + 1);
        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
          ++I;
        }
      }

      if (Char > 0xff) {
        // If this is a wide string, output characters over 0xff using \x
        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
        // codepoint: use \x escapes for invalid codepoints.
        if (getKind() == Wide ||
            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
          // FIXME: Is this the best way to print wchar_t?
          OS << "\\x";
          int Shift = 28;
          while ((Char >> Shift) == 0)
            Shift -= 4;
          for (/**/; Shift >= 0; Shift -= 4)
            OS << Hex[(Char >> Shift) & 15];
          LastSlashX = I;
          break;
        }

        if (Char > 0xffff)
          OS << "\\U00"
             << Hex[(Char >> 20) & 15]
             << Hex[(Char >> 16) & 15];
        else
          OS << "\\u";
        OS << Hex[(Char >> 12) & 15]
           << Hex[(Char >>  8) & 15]
           << Hex[(Char >>  4) & 15]
           << Hex[(Char >>  0) & 15];
        break;
      }

      // If we used \x... for the previous character, and this character is a
      // hexadecimal digit, prevent it being slurped as part of the \x.
      if (LastSlashX + 1 == I) {
        switch (Char) {
          case '0': case '1': case '2': case '3': case '4':
          case '5': case '6': case '7': case '8': case '9':
          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
            OS << "\"\"";
        }
      }

      assert(Char <= 0xff &&
             "Characters above 0xff should already have been handled.");

      if (isPrintable(Char))
        OS << (char)Char;
      else  // Output anything hard as an octal escape.
        OS << '\\'
           << (char)('0' + ((Char >> 6) & 7))
           << (char)('0' + ((Char >> 3) & 7))
           << (char)('0' + ((Char >> 0) & 7));
      break;
    // Handle some common non-printable cases to make dumps prettier.
    case '\\': OS << "\\\\"; break;
    case '"': OS << "\\\""; break;
    case '\a': OS << "\\a"; break;
    case '\b': OS << "\\b"; break;
    case '\f': OS << "\\f"; break;
    case '\n': OS << "\\n"; break;
    case '\r': OS << "\\r"; break;
    case '\t': OS << "\\t"; break;
    case '\v': OS << "\\v"; break;
    }
  }
  OS << '"';
}

/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex.  They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business.  This routine handles this complexity.
///
/// The *StartToken sets the first token to be searched in this function and
/// the *StartTokenByteOffset is the byte offset of the first token. Before
/// returning, it updates the *StartToken to the TokNo of the token being found
/// and sets *StartTokenByteOffset to the byte offset of the token in the
/// string.
/// Using these two parameters can reduce the time complexity from O(n^2) to
/// O(n) if one wants to get the location of byte for all the tokens in a
/// string.
///
SourceLocation
StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
                                 const LangOptions &Features,
                                 const TargetInfo &Target, unsigned *StartToken,
                                 unsigned *StartTokenByteOffset) const {
  assert((getKind() == StringLiteral::Ascii ||
          getKind() == StringLiteral::UTF8) &&
         "Only narrow string literals are currently supported");

  // Loop over all of the tokens in this string until we find the one that
  // contains the byte we're looking for.
  unsigned TokNo = 0;
  unsigned StringOffset = 0;
  if (StartToken)
    TokNo = *StartToken;
  if (StartTokenByteOffset) {
    StringOffset = *StartTokenByteOffset;
    ByteNo -= StringOffset;
  }
  while (1) {
    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);

    // Get the spelling of the string so that we can get the data that makes up
    // the string literal, not the identifier for the macro it is potentially
    // expanded through.
    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);

    // Re-lex the token to get its length and original spelling.
    std::pair<FileID, unsigned> LocInfo =
        SM.getDecomposedLoc(StrTokSpellingLoc);
    bool Invalid = false;
    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
    if (Invalid) {
      if (StartTokenByteOffset != nullptr)
        *StartTokenByteOffset = StringOffset;
      if (StartToken != nullptr)
        *StartToken = TokNo;
      return StrTokSpellingLoc;
    }

    const char *StrData = Buffer.data()+LocInfo.second;

    // Create a lexer starting at the beginning of this token.
    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
                   Buffer.begin(), StrData, Buffer.end());
    Token TheTok;
    TheLexer.LexFromRawLexer(TheTok);

    // Use the StringLiteralParser to compute the length of the string in bytes.
    StringLiteralParser SLP(TheTok, SM, Features, Target);
    unsigned TokNumBytes = SLP.GetStringLength();

    // If the byte is in this token, return the location of the byte.
    if (ByteNo < TokNumBytes ||
        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);

      // Now that we know the offset of the token in the spelling, use the
      // preprocessor to get the offset in the original source.
      if (StartTokenByteOffset != nullptr)
        *StartTokenByteOffset = StringOffset;
      if (StartToken != nullptr)
        *StartToken = TokNo;
      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
    }

    // Move to the next string token.
    StringOffset += TokNumBytes;
    ++TokNo;
    ByteNo -= TokNumBytes;
  }
}

/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
  switch (Op) {
#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
  }
  llvm_unreachable("Unknown unary operator");
}

UnaryOperatorKind
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  switch (OO) {
  default: llvm_unreachable("No unary operator for overloaded function");
  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
  case OO_Amp:        return UO_AddrOf;
  case OO_Star:       return UO_Deref;
  case OO_Plus:       return UO_Plus;
  case OO_Minus:      return UO_Minus;
  case OO_Tilde:      return UO_Not;
  case OO_Exclaim:    return UO_LNot;
  case OO_Coawait:    return UO_Coawait;
  }
}

OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  switch (Opc) {
  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
  case UO_AddrOf: return OO_Amp;
  case UO_Deref: return OO_Star;
  case UO_Plus: return OO_Plus;
  case UO_Minus: return OO_Minus;
  case UO_Not: return OO_Tilde;
  case UO_LNot: return OO_Exclaim;
  case UO_Coawait: return OO_Coawait;
  default: return OO_None;
  }
}


//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//

CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
                   ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
                   SourceLocation RParenLoc, unsigned MinNumArgs,
                   ADLCallKind UsesADL)
    : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
           Fn->isValueDependent(), Fn->isInstantiationDependent(),
           Fn->containsUnexpandedParameterPack()),
      RParenLoc(RParenLoc) {
  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
  unsigned NumPreArgs = PreArgs.size();
  CallExprBits.NumPreArgs = NumPreArgs;
  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");

  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
         "OffsetToTrailingObjects overflow!");

  CallExprBits.UsesADL = static_cast<bool>(UsesADL);

  setCallee(Fn);
  for (unsigned I = 0; I != NumPreArgs; ++I) {
    updateDependenciesFromArg(PreArgs[I]);
    setPreArg(I, PreArgs[I]);
  }
  for (unsigned I = 0; I != Args.size(); ++I) {
    updateDependenciesFromArg(Args[I]);
    setArg(I, Args[I]);
  }
  for (unsigned I = Args.size(); I != NumArgs; ++I) {
    setArg(I, nullptr);
  }
}

CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
                   EmptyShell Empty)
    : Expr(SC, Empty), NumArgs(NumArgs) {
  CallExprBits.NumPreArgs = NumPreArgs;
  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");

  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
         "OffsetToTrailingObjects overflow!");
}

CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
                           ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
                           SourceLocation RParenLoc, unsigned MinNumArgs,
                           ADLCallKind UsesADL) {
  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
  unsigned SizeOfTrailingObjects =
      CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
  void *Mem =
      Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
                            RParenLoc, MinNumArgs, UsesADL);
}

CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
                                    ExprValueKind VK, SourceLocation RParenLoc,
                                    ADLCallKind UsesADL) {
  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
         "Misaligned memory in CallExpr::CreateTemporary!");
  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
                            VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
}

CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
                                EmptyShell Empty) {
  unsigned SizeOfTrailingObjects =
      CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
  void *Mem =
      Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
  return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
}

unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
  switch (SC) {
  case CallExprClass:
    return sizeof(CallExpr);
  case CXXOperatorCallExprClass:
    return sizeof(CXXOperatorCallExpr);
  case CXXMemberCallExprClass:
    return sizeof(CXXMemberCallExpr);
  case UserDefinedLiteralClass:
    return sizeof(UserDefinedLiteral);
  case CUDAKernelCallExprClass:
    return sizeof(CUDAKernelCallExpr);
  default:
    llvm_unreachable("unexpected class deriving from CallExpr!");
  }
}

void CallExpr::updateDependenciesFromArg(Expr *Arg) {
  if (Arg->isTypeDependent())
    ExprBits.TypeDependent = true;
  if (Arg->isValueDependent())
    ExprBits.ValueDependent = true;
  if (Arg->isInstantiationDependent())
    ExprBits.InstantiationDependent = true;
  if (Arg->containsUnexpandedParameterPack())
    ExprBits.ContainsUnexpandedParameterPack = true;
}

Decl *Expr::getReferencedDeclOfCallee() {
  Expr *CEE = IgnoreParenImpCasts();

  while (SubstNonTypeTemplateParmExpr *NTTP
                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
    CEE = NTTP->getReplacement()->IgnoreParenCasts();
  }

  // If we're calling a dereference, look at the pointer instead.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
    if (BO->isPtrMemOp())
      CEE = BO->getRHS()->IgnoreParenCasts();
  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
    if (UO->getOpcode() == UO_Deref)
      CEE = UO->getSubExpr()->IgnoreParenCasts();
  }
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
    return DRE->getDecl();
  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
    return ME->getMemberDecl();
  if (auto *BE = dyn_cast<BlockExpr>(CEE))
    return BE->getBlockDecl();

  return nullptr;
}

/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
/// not, return 0.
unsigned CallExpr::getBuiltinCallee() const {
  // All simple function calls (e.g. func()) are implicitly cast to pointer to
  // function. As a result, we try and obtain the DeclRefExpr from the
  // ImplicitCastExpr.
  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
    return 0;

  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  if (!DRE)
    return 0;

  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  if (!FDecl)
    return 0;

  if (!FDecl->getIdentifier())
    return 0;

  return FDecl->getBuiltinID();
}

bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
  if (unsigned BI = getBuiltinCallee())
    return Ctx.BuiltinInfo.isUnevaluated(BI);
  return false;
}

QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
  const Expr *Callee = getCallee();
  QualType CalleeType = Callee->getType();
  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
    CalleeType = FnTypePtr->getPointeeType();
  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
    CalleeType = BPT->getPointeeType();
  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
    if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
      return Ctx.VoidTy;

    // This should never be overloaded and so should never return null.
    CalleeType = Expr::findBoundMemberType(Callee);
  }

  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
  return FnType->getReturnType();
}

const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
  // If the return type is a struct, union, or enum that is marked nodiscard,
  // then return the return type attribute.
  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
    if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
      return A;

  // Otherwise, see if the callee is marked nodiscard and return that attribute
  // instead.
  const Decl *D = getCalleeDecl();
  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
}

SourceLocation CallExpr::getBeginLoc() const {
  if (isa<CXXOperatorCallExpr>(this))
    return cast<CXXOperatorCallExpr>(this)->getBeginLoc();

  SourceLocation begin = getCallee()->getBeginLoc();
  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
    begin = getArg(0)->getBeginLoc();
  return begin;
}
SourceLocation CallExpr::getEndLoc() const {
  if (isa<CXXOperatorCallExpr>(this))
    return cast<CXXOperatorCallExpr>(this)->getEndLoc();

  SourceLocation end = getRParenLoc();
  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
    end = getArg(getNumArgs() - 1)->getEndLoc();
  return end;
}

OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
                                   SourceLocation OperatorLoc,
                                   TypeSourceInfo *tsi,
                                   ArrayRef<OffsetOfNode> comps,
                                   ArrayRef<Expr*> exprs,
                                   SourceLocation RParenLoc) {
  void *Mem = C.Allocate(
      totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));

  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
                                RParenLoc);
}

OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
                                        unsigned numComps, unsigned numExprs) {
  void *Mem =
      C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
  return new (Mem) OffsetOfExpr(numComps, numExprs);
}

OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
                           SourceLocation RParenLoc)
  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
         /*TypeDependent=*/false,
         /*ValueDependent=*/tsi->getType()->isDependentType(),
         tsi->getType()->isInstantiationDependentType(),
         tsi->getType()->containsUnexpandedParameterPack()),
    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
    NumComps(comps.size()), NumExprs(exprs.size())
{
  for (unsigned i = 0; i != comps.size(); ++i) {
    setComponent(i, comps[i]);
  }

  for (unsigned i = 0; i != exprs.size(); ++i) {
    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (exprs[i]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    setIndexExpr(i, exprs[i]);
  }
}

IdentifierInfo *OffsetOfNode::getFieldName() const {
  assert(getKind() == Field || getKind() == Identifier);
  if (getKind() == Field)
    return getField()->getIdentifier();

  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
}

UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
    UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
    SourceLocation op, SourceLocation rp)
    : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
           false, // Never type-dependent (C++ [temp.dep.expr]p3).
           // Value-dependent if the argument is type-dependent.
           E->isTypeDependent(), E->isInstantiationDependent(),
           E->containsUnexpandedParameterPack()),
      OpLoc(op), RParenLoc(rp) {
  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
  UnaryExprOrTypeTraitExprBits.IsType = false;
  Argument.Ex = E;

  // Check to see if we are in the situation where alignof(decl) should be
  // dependent because decl's alignment is dependent.
  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
    if (!isValueDependent() || !isInstantiationDependent()) {
      E = E->IgnoreParens();

      const ValueDecl *D = nullptr;
      if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
        D = DRE->getDecl();
      else if (const auto *ME = dyn_cast<MemberExpr>(E))
        D = ME->getMemberDecl();

      if (D) {
        for (const auto *I : D->specific_attrs<AlignedAttr>()) {
          if (I->isAlignmentDependent()) {
            setValueDependent(true);
            setInstantiationDependent(true);
            break;
          }
        }
      }
    }
  }
}

MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
                       ValueDecl *MemberDecl,
                       const DeclarationNameInfo &NameInfo, QualType T,
                       ExprValueKind VK, ExprObjectKind OK,
                       NonOdrUseReason NOUR)
    : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
           Base->isValueDependent(), Base->isInstantiationDependent(),
           Base->containsUnexpandedParameterPack()),
      Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
      MemberLoc(NameInfo.getLoc()) {
  assert(!NameInfo.getName() ||
         MemberDecl->getDeclName() == NameInfo.getName());
  MemberExprBits.IsArrow = IsArrow;
  MemberExprBits.HasQualifierOrFoundDecl = false;
  MemberExprBits.HasTemplateKWAndArgsInfo = false;
  MemberExprBits.HadMultipleCandidates = false;
  MemberExprBits.NonOdrUseReason = NOUR;
  MemberExprBits.OperatorLoc = OperatorLoc;
}

MemberExpr *MemberExpr::Create(
    const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
    NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
    ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
    DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
    QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
  bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
                        FoundDecl.getAccess() != MemberDecl->getAccess();
  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  std::size_t Size =
      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
                       TemplateArgumentLoc>(
          HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
          TemplateArgs ? TemplateArgs->size() : 0);

  void *Mem = C.Allocate(Size, alignof(MemberExpr));
  MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
                                       NameInfo, T, VK, OK, NOUR);

  if (HasQualOrFound) {
    // FIXME: Wrong. We should be looking at the member declaration we found.
    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
      E->setValueDependent(true);
      E->setTypeDependent(true);
      E->setInstantiationDependent(true);
    }
    else if (QualifierLoc &&
             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
      E->setInstantiationDependent(true);

    E->MemberExprBits.HasQualifierOrFoundDecl = true;

    MemberExprNameQualifier *NQ =
        E->getTrailingObjects<MemberExprNameQualifier>();
    NQ->QualifierLoc = QualifierLoc;
    NQ->FoundDecl = FoundDecl;
  }

  E->MemberExprBits.HasTemplateKWAndArgsInfo =
      TemplateArgs || TemplateKWLoc.isValid();

  if (TemplateArgs) {
    bool Dependent = false;
    bool InstantiationDependent = false;
    bool ContainsUnexpandedParameterPack = false;
    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc, *TemplateArgs,
        E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
        InstantiationDependent, ContainsUnexpandedParameterPack);
    if (InstantiationDependent)
      E->setInstantiationDependent(true);
  } else if (TemplateKWLoc.isValid()) {
    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc);
  }

  return E;
}

MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
                                    bool HasQualifier, bool HasFoundDecl,
                                    bool HasTemplateKWAndArgsInfo,
                                    unsigned NumTemplateArgs) {
  assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
         "template args but no template arg info?");
  bool HasQualOrFound = HasQualifier || HasFoundDecl;
  std::size_t Size =
      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
                       TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
                                            HasTemplateKWAndArgsInfo ? 1 : 0,
                                            NumTemplateArgs);
  void *Mem = Context.Allocate(Size, alignof(MemberExpr));
  return new (Mem) MemberExpr(EmptyShell());
}

SourceLocation MemberExpr::getBeginLoc() const {
  if (isImplicitAccess()) {
    if (hasQualifier())
      return getQualifierLoc().getBeginLoc();
    return MemberLoc;
  }

  // FIXME: We don't want this to happen. Rather, we should be able to
  // detect all kinds of implicit accesses more cleanly.
  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
  if (BaseStartLoc.isValid())
    return BaseStartLoc;
  return MemberLoc;
}
SourceLocation MemberExpr::getEndLoc() const {
  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
  if (hasExplicitTemplateArgs())
    EndLoc = getRAngleLoc();
  else if (EndLoc.isInvalid())
    EndLoc = getBase()->getEndLoc();
  return EndLoc;
}

bool CastExpr::CastConsistency() const {
  switch (getCastKind()) {
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_DerivedToBaseMemberPointer:
  case CK_BaseToDerived:
  case CK_BaseToDerivedMemberPointer:
    assert(!path_empty() && "Cast kind should have a base path!");
    break;

  case CK_CPointerToObjCPointerCast:
    assert(getType()->isObjCObjectPointerType());
    assert(getSubExpr()->getType()->isPointerType());
    goto CheckNoBasePath;

  case CK_BlockPointerToObjCPointerCast:
    assert(getType()->isObjCObjectPointerType());
    assert(getSubExpr()->getType()->isBlockPointerType());
    goto CheckNoBasePath;

  case CK_ReinterpretMemberPointer:
    assert(getType()->isMemberPointerType());
    assert(getSubExpr()->getType()->isMemberPointerType());
    goto CheckNoBasePath;

  case CK_BitCast:
    // Arbitrary casts to C pointer types count as bitcasts.
    // Otherwise, we should only have block and ObjC pointer casts
    // here if they stay within the type kind.
    if (!getType()->isPointerType()) {
      assert(getType()->isObjCObjectPointerType() ==
             getSubExpr()->getType()->isObjCObjectPointerType());
      assert(getType()->isBlockPointerType() ==
             getSubExpr()->getType()->isBlockPointerType());
    }
    goto CheckNoBasePath;

  case CK_AnyPointerToBlockPointerCast:
    assert(getType()->isBlockPointerType());
    assert(getSubExpr()->getType()->isAnyPointerType() &&
           !getSubExpr()->getType()->isBlockPointerType());
    goto CheckNoBasePath;

  case CK_CopyAndAutoreleaseBlockObject:
    assert(getType()->isBlockPointerType());
    assert(getSubExpr()->getType()->isBlockPointerType());
    goto CheckNoBasePath;

  case CK_FunctionToPointerDecay:
    assert(getType()->isPointerType());
    assert(getSubExpr()->getType()->isFunctionType());
    goto CheckNoBasePath;

  case CK_AddressSpaceConversion: {
    auto Ty = getType();
    auto SETy = getSubExpr()->getType();
    assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
    if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
      Ty = Ty->getPointeeType();
      SETy = SETy->getPointeeType();
    }
    assert(!Ty.isNull() && !SETy.isNull() &&
           Ty.getAddressSpace() != SETy.getAddressSpace());
    goto CheckNoBasePath;
  }
  // These should not have an inheritance path.
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_NullToMemberPointer:
  case CK_NullToPointer:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_BooleanToSignedIntegral:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_ZeroToOCLOpaqueType:
  case CK_IntToOCLSampler:
  case CK_FixedPointCast:
  case CK_FixedPointToIntegral:
  case CK_IntegralToFixedPoint:
    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
    goto CheckNoBasePath;

  case CK_Dependent:
  case CK_LValueToRValue:
  case CK_NoOp:
  case CK_AtomicToNonAtomic:
  case CK_NonAtomicToAtomic:
  case CK_PointerToBoolean:
  case CK_IntegralToBoolean:
  case CK_FloatingToBoolean:
  case CK_MemberPointerToBoolean:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToBoolean:
  case CK_LValueBitCast:            // -> bool&
  case CK_LValueToRValueBitCast:
  case CK_UserDefinedConversion:    // operator bool()
  case CK_BuiltinFnToFnPtr:
  case CK_FixedPointToBoolean:
  CheckNoBasePath:
    assert(path_empty() && "Cast kind should not have a base path!");
    break;
  }
  return true;
}

const char *CastExpr::getCastKindName(CastKind CK) {
  switch (CK) {
#define CAST_OPERATION(Name) case CK_##Name: return #Name;
#include "clang/AST/OperationKinds.def"
  }
  llvm_unreachable("Unhandled cast kind!");
}

namespace {
  const Expr *skipImplicitTemporary(const Expr *E) {
    // Skip through reference binding to temporary.
    if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
      E = Materialize->GetTemporaryExpr();

    // Skip any temporary bindings; they're implicit.
    if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
      E = Binder->getSubExpr();

    return E;
  }
}

Expr *CastExpr::getSubExprAsWritten() {
  const Expr *SubExpr = nullptr;
  const CastExpr *E = this;
  do {
    SubExpr = skipImplicitTemporary(E->getSubExpr());

    // Conversions by constructor and conversion functions have a
    // subexpression describing the call; strip it off.
    if (E->getCastKind() == CK_ConstructorConversion)
      SubExpr =
        skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
    else if (E->getCastKind() == CK_UserDefinedConversion) {
      assert((isa<CXXMemberCallExpr>(SubExpr) ||
              isa<BlockExpr>(SubExpr)) &&
             "Unexpected SubExpr for CK_UserDefinedConversion.");
      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
        SubExpr = MCE->getImplicitObjectArgument();
    }

    // If the subexpression we're left with is an implicit cast, look
    // through that, too.
  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));

  return const_cast<Expr*>(SubExpr);
}

NamedDecl *CastExpr::getConversionFunction() const {
  const Expr *SubExpr = nullptr;

  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
    SubExpr = skipImplicitTemporary(E->getSubExpr());

    if (E->getCastKind() == CK_ConstructorConversion)
      return cast<CXXConstructExpr>(SubExpr)->getConstructor();

    if (E->getCastKind() == CK_UserDefinedConversion) {
      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
        return MCE->getMethodDecl();
    }
  }

  return nullptr;
}

CXXBaseSpecifier **CastExpr::path_buffer() {
  switch (getStmtClass()) {
#define ABSTRACT_STMT(x)
#define CASTEXPR(Type, Base)                                                   \
  case Stmt::Type##Class:                                                      \
    return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
#define STMT(Type, Base)
#include "clang/AST/StmtNodes.inc"
  default:
    llvm_unreachable("non-cast expressions not possible here");
  }
}

const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
                                                        QualType opType) {
  auto RD = unionType->castAs<RecordType>()->getDecl();
  return getTargetFieldForToUnionCast(RD, opType);
}

const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
                                                        QualType OpType) {
  auto &Ctx = RD->getASTContext();
  RecordDecl::field_iterator Field, FieldEnd;
  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
       Field != FieldEnd; ++Field) {
    if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
        !Field->isUnnamedBitfield()) {
      return *Field;
    }
  }
  return nullptr;
}

ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
                                           CastKind Kind, Expr *Operand,
                                           const CXXCastPath *BasePath,
                                           ExprValueKind VK) {
  unsigned PathSize = (BasePath ? BasePath->size() : 0);
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
  // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
  assert((Kind != CK_LValueToRValue ||
          !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
         "invalid type for lvalue-to-rvalue conversion");
  ImplicitCastExpr *E =
    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
  if (PathSize)
    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
                              E->getTrailingObjects<CXXBaseSpecifier *>());
  return E;
}

ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
                                                unsigned PathSize) {
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
}


CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
                                       ExprValueKind VK, CastKind K, Expr *Op,
                                       const CXXCastPath *BasePath,
                                       TypeSourceInfo *WrittenTy,
                                       SourceLocation L, SourceLocation R) {
  unsigned PathSize = (BasePath ? BasePath->size() : 0);
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  CStyleCastExpr *E =
    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
  if (PathSize)
    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
                              E->getTrailingObjects<CXXBaseSpecifier *>());
  return E;
}

CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
                                            unsigned PathSize) {
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
}

/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
  switch (Op) {
#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
  }
  llvm_unreachable("Invalid OpCode!");
}

BinaryOperatorKind
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  switch (OO) {
  default: llvm_unreachable("Not an overloadable binary operator");
  case OO_Plus: return BO_Add;
  case OO_Minus: return BO_Sub;
  case OO_Star: return BO_Mul;
  case OO_Slash: return BO_Div;
  case OO_Percent: return BO_Rem;
  case OO_Caret: return BO_Xor;
  case OO_Amp: return BO_And;
  case OO_Pipe: return BO_Or;
  case OO_Equal: return BO_Assign;
  case OO_Spaceship: return BO_Cmp;
  case OO_Less: return BO_LT;
  case OO_Greater: return BO_GT;
  case OO_PlusEqual: return BO_AddAssign;
  case OO_MinusEqual: return BO_SubAssign;
  case OO_StarEqual: return BO_MulAssign;
  case OO_SlashEqual: return BO_DivAssign;
  case OO_PercentEqual: return BO_RemAssign;
  case OO_CaretEqual: return BO_XorAssign;
  case OO_AmpEqual: return BO_AndAssign;
  case OO_PipeEqual: return BO_OrAssign;
  case OO_LessLess: return BO_Shl;
  case OO_GreaterGreater: return BO_Shr;
  case OO_LessLessEqual: return BO_ShlAssign;
  case OO_GreaterGreaterEqual: return BO_ShrAssign;
  case OO_EqualEqual: return BO_EQ;
  case OO_ExclaimEqual: return BO_NE;
  case OO_LessEqual: return BO_LE;
  case OO_GreaterEqual: return BO_GE;
  case OO_AmpAmp: return BO_LAnd;
  case OO_PipePipe: return BO_LOr;
  case OO_Comma: return BO_Comma;
  case OO_ArrowStar: return BO_PtrMemI;
  }
}

OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  static const OverloadedOperatorKind OverOps[] = {
    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
    OO_Star, OO_Slash, OO_Percent,
    OO_Plus, OO_Minus,
    OO_LessLess, OO_GreaterGreater,
    OO_Spaceship,
    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
    OO_EqualEqual, OO_ExclaimEqual,
    OO_Amp,
    OO_Caret,
    OO_Pipe,
    OO_AmpAmp,
    OO_PipePipe,
    OO_Equal, OO_StarEqual,
    OO_SlashEqual, OO_PercentEqual,
    OO_PlusEqual, OO_MinusEqual,
    OO_LessLessEqual, OO_GreaterGreaterEqual,
    OO_AmpEqual, OO_CaretEqual,
    OO_PipeEqual,
    OO_Comma
  };
  return OverOps[Opc];
}

bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
                                                      Opcode Opc,
                                                      Expr *LHS, Expr *RHS) {
  if (Opc != BO_Add)
    return false;

  // Check that we have one pointer and one integer operand.
  Expr *PExp;
  if (LHS->getType()->isPointerType()) {
    if (!RHS->getType()->isIntegerType())
      return false;
    PExp = LHS;
  } else if (RHS->getType()->isPointerType()) {
    if (!LHS->getType()->isIntegerType())
      return false;
    PExp = RHS;
  } else {
    return false;
  }

  // Check that the pointer is a nullptr.
  if (!PExp->IgnoreParenCasts()
          ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
    return false;

  // Check that the pointee type is char-sized.
  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
  if (!PTy || !PTy->getPointeeType()->isCharType())
    return false;

  return true;
}

static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
                                            SourceLocExpr::IdentKind Kind) {
  switch (Kind) {
  case SourceLocExpr::File:
  case SourceLocExpr::Function: {
    QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
    return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
  }
  case SourceLocExpr::Line:
  case SourceLocExpr::Column:
    return Ctx.UnsignedIntTy;
  }
  llvm_unreachable("unhandled case");
}

SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
                             SourceLocation BLoc, SourceLocation RParenLoc,
                             DeclContext *ParentContext)
    : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
           VK_RValue, OK_Ordinary, false, false, false, false),
      BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
  SourceLocExprBits.Kind = Kind;
}

StringRef SourceLocExpr::getBuiltinStr() const {
  switch (getIdentKind()) {
  case File:
    return "__builtin_FILE";
  case Function:
    return "__builtin_FUNCTION";
  case Line:
    return "__builtin_LINE";
  case Column:
    return "__builtin_COLUMN";
  }
  llvm_unreachable("unexpected IdentKind!");
}

APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
                                         const Expr *DefaultExpr) const {
  SourceLocation Loc;
  const DeclContext *Context;

  std::tie(Loc,
           Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
    if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
      return {DIE->getUsedLocation(), DIE->getUsedContext()};
    if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
      return {DAE->getUsedLocation(), DAE->getUsedContext()};
    return {this->getLocation(), this->getParentContext()};
  }();

  PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
      Ctx.getSourceManager().getExpansionRange(Loc).getEnd());

  auto MakeStringLiteral = [&](StringRef Tmp) {
    using LValuePathEntry = APValue::LValuePathEntry;
    StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
    // Decay the string to a pointer to the first character.
    LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
    return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
  };

  switch (getIdentKind()) {
  case SourceLocExpr::File:
    return MakeStringLiteral(PLoc.getFilename());
  case SourceLocExpr::Function: {
    const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
    return MakeStringLiteral(
        CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
                : std::string(""));
  }
  case SourceLocExpr::Line:
  case SourceLocExpr::Column: {
    llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
                        /*isUnsigned=*/true);
    IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
                                                   : PLoc.getColumn();
    return APValue(IntVal);
  }
  }
  llvm_unreachable("unhandled case");
}

InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
         false, false),
    InitExprs(C, initExprs.size()),
    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
{
  sawArrayRangeDesignator(false);
  for (unsigned I = 0; I != initExprs.size(); ++I) {
    if (initExprs[I]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (initExprs[I]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (initExprs[I]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (initExprs[I]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;
  }

  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
}

void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
  if (NumInits > InitExprs.size())
    InitExprs.reserve(C, NumInits);
}

void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
  InitExprs.resize(C, NumInits, nullptr);
}

Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
  if (Init >= InitExprs.size()) {
    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
    setInit(Init, expr);
    return nullptr;
  }

  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  setInit(Init, expr);
  return Result;
}

void InitListExpr::setArrayFiller(Expr *filler) {
  assert(!hasArrayFiller() && "Filler already set!");
  ArrayFillerOrUnionFieldInit = filler;
  // Fill out any "holes" in the array due to designated initializers.
  Expr **inits = getInits();
  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
    if (inits[i] == nullptr)
      inits[i] = filler;
}

bool InitListExpr::isStringLiteralInit() const {
  if (getNumInits() != 1)
    return false;
  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
  if (!AT || !AT->getElementType()->isIntegerType())
    return false;
  // It is possible for getInit() to return null.
  const Expr *Init = getInit(0);
  if (!Init)
    return false;
  Init = Init->IgnoreParens();
  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
}

bool InitListExpr::isTransparent() const {
  assert(isSemanticForm() && "syntactic form never semantically transparent");

  // A glvalue InitListExpr is always just sugar.
  if (isGLValue()) {
    assert(getNumInits() == 1 && "multiple inits in glvalue init list");
    return true;
  }

  // Otherwise, we're sugar if and only if we have exactly one initializer that
  // is of the same type.
  if (getNumInits() != 1 || !getInit(0))
    return false;

  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
  // transparent struct copy.
  if (!getInit(0)->isRValue() && getType()->isRecordType())
    return false;

  return getType().getCanonicalType() ==
         getInit(0)->getType().getCanonicalType();
}

bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
  assert(isSyntacticForm() && "only test syntactic form as zero initializer");

  if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
    return false;
  }

  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
  return Lit && Lit->getValue() == 0;
}

SourceLocation InitListExpr::getBeginLoc() const {
  if (InitListExpr *SyntacticForm = getSyntacticForm())
    return SyntacticForm->getBeginLoc();
  SourceLocation Beg = LBraceLoc;
  if (Beg.isInvalid()) {
    // Find the first non-null initializer.
    for (InitExprsTy::const_iterator I = InitExprs.begin(),
                                     E = InitExprs.end();
      I != E; ++I) {
      if (Stmt *S = *I) {
        Beg = S->getBeginLoc();
        break;
      }
    }
  }
  return Beg;
}

SourceLocation InitListExpr::getEndLoc() const {
  if (InitListExpr *SyntacticForm = getSyntacticForm())
    return SyntacticForm->getEndLoc();
  SourceLocation End = RBraceLoc;
  if (End.isInvalid()) {
    // Find the first non-null initializer from the end.
    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
         E = InitExprs.rend();
         I != E; ++I) {
      if (Stmt *S = *I) {
        End = S->getEndLoc();
        break;
      }
    }
  }
  return End;
}

/// getFunctionType - Return the underlying function type for this block.
///
const FunctionProtoType *BlockExpr::getFunctionType() const {
  // The block pointer is never sugared, but the function type might be.
  return cast<BlockPointerType>(getType())
           ->getPointeeType()->castAs<FunctionProtoType>();
}

SourceLocation BlockExpr::getCaretLocation() const {
  return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
  return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
  return TheBlock->getBody();
}


//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//

/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused.  If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
                                  SourceRange &R1, SourceRange &R2,
                                  ASTContext &Ctx) const {
  // Don't warn if the expr is type dependent. The type could end up
  // instantiating to void.
  if (isTypeDependent())
    return false;

  switch (getStmtClass()) {
  default:
    if (getType()->isVoidType())
      return false;
    WarnE = this;
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case GenericSelectionExprClass:
    return cast<GenericSelectionExpr>(this)->getResultExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case CoawaitExprClass:
  case CoyieldExprClass:
    return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case ChooseExprClass:
    return cast<ChooseExpr>(this)->getChosenSubExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case UnaryOperatorClass: {
    const UnaryOperator *UO = cast<UnaryOperator>(this);

    switch (UO->getOpcode()) {
    case UO_Plus:
    case UO_Minus:
    case UO_AddrOf:
    case UO_Not:
    case UO_LNot:
    case UO_Deref:
      break;
    case UO_Coawait:
      // This is just the 'operator co_await' call inside the guts of a
      // dependent co_await call.
    case UO_PostInc:
    case UO_PostDec:
    case UO_PreInc:
    case UO_PreDec:                 // ++/--
      return false;  // Not a warning.
    case UO_Real:
    case UO_Imag:
      // accessing a piece of a volatile complex is a side-effect.
      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
          .isVolatileQualified())
        return false;
      break;
    case UO_Extension:
      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
    }
    WarnE = this;
    Loc = UO->getOperatorLoc();
    R1 = UO->getSubExpr()->getSourceRange();
    return true;
  }
  case BinaryOperatorClass: {
    const BinaryOperator *BO = cast<BinaryOperator>(this);
    switch (BO->getOpcode()) {
      default:
        break;
      // Consider the RHS of comma for side effects. LHS was checked by
      // Sema::CheckCommaOperands.
      case BO_Comma:
        // ((foo = <blah>), 0) is an idiom for hiding the result (and
        // lvalue-ness) of an assignment written in a macro.
        if (IntegerLiteral *IE =
              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
          if (IE->getValue() == 0)
            return false;
        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
      // Consider '||', '&&' to have side effects if the LHS or RHS does.
      case BO_LAnd:
      case BO_LOr:
        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
          return false;
        break;
    }
    if (BO->isAssignmentOp())
      return false;
    WarnE = this;
    Loc = BO->getOperatorLoc();
    R1 = BO->getLHS()->getSourceRange();
    R2 = BO->getRHS()->getSourceRange();
    return true;
  }
  case CompoundAssignOperatorClass:
  case VAArgExprClass:
  case AtomicExprClass:
    return false;

  case ConditionalOperatorClass: {
    // If only one of the LHS or RHS is a warning, the operator might
    // be being used for control flow. Only warn if both the LHS and
    // RHS are warnings.
    const auto *Exp = cast<ConditionalOperator>(this);
    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
           Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }
  case BinaryConditionalOperatorClass: {
    const auto *Exp = cast<BinaryConditionalOperator>(this);
    return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }

  case MemberExprClass:
    WarnE = this;
    Loc = cast<MemberExpr>(this)->getMemberLoc();
    R1 = SourceRange(Loc, Loc);
    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
    return true;

  case ArraySubscriptExprClass:
    WarnE = this;
    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
    return true;

  case CXXOperatorCallExprClass: {
    // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
    // overloads as there is no reasonable way to define these such that they
    // have non-trivial, desirable side-effects. See the -Wunused-comparison
    // warning: operators == and != are commonly typo'ed, and so warning on them
    // provides additional value as well. If this list is updated,
    // DiagnoseUnusedComparison should be as well.
    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
    switch (Op->getOperator()) {
    default:
      break;
    case OO_EqualEqual:
    case OO_ExclaimEqual:
    case OO_Less:
    case OO_Greater:
    case OO_GreaterEqual:
    case OO_LessEqual:
      if (Op->getCallReturnType(Ctx)->isReferenceType() ||
          Op->getCallReturnType(Ctx)->isVoidType())
        break;
      WarnE = this;
      Loc = Op->getOperatorLoc();
      R1 = Op->getSourceRange();
      return true;
    }

    // Fallthrough for generic call handling.
    LLVM_FALLTHROUGH;
  }
  case CallExprClass:
  case CXXMemberCallExprClass:
  case UserDefinedLiteralClass: {
    // If this is a direct call, get the callee.
    const CallExpr *CE = cast<CallExpr>(this);
    if (const Decl *FD = CE->getCalleeDecl()) {
      // If the callee has attribute pure, const, or warn_unused_result, warn
      // about it. void foo() { strlen("bar"); } should warn.
      //
      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
      // updated to match for QoI.
      if (CE->hasUnusedResultAttr(Ctx) ||
          FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
        WarnE = this;
        Loc = CE->getCallee()->getBeginLoc();
        R1 = CE->getCallee()->getSourceRange();

        if (unsigned NumArgs = CE->getNumArgs())
          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
                           CE->getArg(NumArgs - 1)->getEndLoc());
        return true;
      }
    }
    return false;
  }

  // If we don't know precisely what we're looking at, let's not warn.
  case UnresolvedLookupExprClass:
  case CXXUnresolvedConstructExprClass:
    return false;

  case CXXTemporaryObjectExprClass:
  case CXXConstructExprClass: {
    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
      const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
      if (Type->hasAttr<WarnUnusedAttr>() ||
          (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
        WarnE = this;
        Loc = getBeginLoc();
        R1 = getSourceRange();
        return true;
      }
    }

    const auto *CE = cast<CXXConstructExpr>(this);
    if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
      const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
      if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
        WarnE = this;
        Loc = getBeginLoc();
        R1 = getSourceRange();

        if (unsigned NumArgs = CE->getNumArgs())
          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
                           CE->getArg(NumArgs - 1)->getEndLoc());
        return true;
      }
    }

    return false;
  }

  case ObjCMessageExprClass: {
    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
    if (Ctx.getLangOpts().ObjCAutoRefCount &&
        ME->isInstanceMessage() &&
        !ME->getType()->isVoidType() &&
        ME->getMethodFamily() == OMF_init) {
      WarnE = this;
      Loc = getExprLoc();
      R1 = ME->getSourceRange();
      return true;
    }

    if (const ObjCMethodDecl *MD = ME->getMethodDecl())
      if (MD->hasAttr<WarnUnusedResultAttr>()) {
        WarnE = this;
        Loc = getExprLoc();
        return true;
      }

    return false;
  }

  case ObjCPropertyRefExprClass:
    WarnE = this;
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;

  case PseudoObjectExprClass: {
    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);

    // Only complain about things that have the form of a getter.
    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
        isa<BinaryOperator>(PO->getSyntacticForm()))
      return false;

    WarnE = this;
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;
  }

  case StmtExprClass: {
    // Statement exprs don't logically have side effects themselves, but are
    // sometimes used in macros in ways that give them a type that is unused.
    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
    // however, if the result of the stmt expr is dead, we don't want to emit a
    // warning.
    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
    if (!CS->body_empty()) {
      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
    }

    if (getType()->isVoidType())
      return false;
    WarnE = this;
    Loc = cast<StmtExpr>(this)->getLParenLoc();
    R1 = getSourceRange();
    return true;
  }
  case CXXFunctionalCastExprClass:
  case CStyleCastExprClass: {
    // Ignore an explicit cast to void unless the operand is a non-trivial
    // volatile lvalue.
    const CastExpr *CE = cast<CastExpr>(this);
    if (CE->getCastKind() == CK_ToVoid) {
      if (CE->getSubExpr()->isGLValue() &&
          CE->getSubExpr()->getType().isVolatileQualified()) {
        const DeclRefExpr *DRE =
            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
              cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
            !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
                                                          R1, R2, Ctx);
        }
      }
      return false;
    }

    // If this is a cast to a constructor conversion, check the operand.
    // Otherwise, the result of the cast is unused.
    if (CE->getCastKind() == CK_ConstructorConversion)
      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);

    WarnE = this;
    if (const CXXFunctionalCastExpr *CXXCE =
            dyn_cast<CXXFunctionalCastExpr>(this)) {
      Loc = CXXCE->getBeginLoc();
      R1 = CXXCE->getSubExpr()->getSourceRange();
    } else {
      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
      Loc = CStyleCE->getLParenLoc();
      R1 = CStyleCE->getSubExpr()->getSourceRange();
    }
    return true;
  }
  case ImplicitCastExprClass: {
    const CastExpr *ICE = cast<ImplicitCastExpr>(this);

    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
    if (ICE->getCastKind() == CK_LValueToRValue &&
        ICE->getSubExpr()->getType().isVolatileQualified())
      return false;

    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }
  case CXXDefaultArgExprClass:
    return (cast<CXXDefaultArgExpr>(this)
            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  case CXXDefaultInitExprClass:
    return (cast<CXXDefaultInitExpr>(this)
            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));

  case CXXNewExprClass:
    // FIXME: In theory, there might be new expressions that don't have side
    // effects (e.g. a placement new with an uninitialized POD).
  case CXXDeleteExprClass:
    return false;
  case MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case CXXBindTemporaryExprClass:
    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case ExprWithCleanupsClass:
    return cast<ExprWithCleanups>(this)->getSubExpr()
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }
}

/// isOBJCGCCandidate - Check if an expression is objc gc'able.
/// returns true, if it is; false otherwise.
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  const Expr *E = IgnoreParens();
  switch (E->getStmtClass()) {
  default:
    return false;
  case ObjCIvarRefExprClass:
    return true;
  case Expr::UnaryOperatorClass:
    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case ImplicitCastExprClass:
    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
                                                      ->isOBJCGCCandidate(Ctx);
  case CStyleCastExprClass:
    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case DeclRefExprClass: {
    const Decl *D = cast<DeclRefExpr>(E)->getDecl();

    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
      if (VD->hasGlobalStorage())
        return true;
      QualType T = VD->getType();
      // dereferencing to a  pointer is always a gc'able candidate,
      // unless it is __weak.
      return T->isPointerType() &&
             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
    }
    return false;
  }
  case MemberExprClass: {
    const MemberExpr *M = cast<MemberExpr>(E);
    return M->getBase()->isOBJCGCCandidate(Ctx);
  }
  case ArraySubscriptExprClass:
    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
  }
}

bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
  if (isTypeDependent())
    return false;
  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
}

QualType Expr::findBoundMemberType(const Expr *expr) {
  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));

  // Bound member expressions are always one of these possibilities:
  //   x->m      x.m      x->*y      x.*y
  // (possibly parenthesized)

  expr = expr->IgnoreParens();
  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
    return mem->getMemberDecl()->getType();
  }

  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
                      ->getPointeeType();
    assert(type->isFunctionType());
    return type;
  }

  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
  return QualType();
}

static Expr *IgnoreImpCastsSingleStep(Expr *E) {
  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
    return ICE->getSubExpr();

  if (auto *FE = dyn_cast<FullExpr>(E))
    return FE->getSubExpr();

  return E;
}

static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
  // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
  // addition to what IgnoreImpCasts() skips to account for the current
  // behaviour of IgnoreParenImpCasts().
  Expr *SubE = IgnoreImpCastsSingleStep(E);
  if (SubE != E)
    return SubE;

  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
    return MTE->GetTemporaryExpr();

  if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    return NTTP->getReplacement();

  return E;
}

static Expr *IgnoreCastsSingleStep(Expr *E) {
  if (auto *CE = dyn_cast<CastExpr>(E))
    return CE->getSubExpr();

  if (auto *FE = dyn_cast<FullExpr>(E))
    return FE->getSubExpr();

  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
    return MTE->GetTemporaryExpr();

  if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    return NTTP->getReplacement();

  return E;
}

static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
  // Skip what IgnoreCastsSingleStep skips, except that only
  // lvalue-to-rvalue casts are skipped.
  if (auto *CE = dyn_cast<CastExpr>(E))
    if (CE->getCastKind() != CK_LValueToRValue)
      return E;

  return IgnoreCastsSingleStep(E);
}

static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
  if (auto *CE = dyn_cast<CastExpr>(E))
    if (CE->getCastKind() == CK_DerivedToBase ||
        CE->getCastKind() == CK_UncheckedDerivedToBase ||
        CE->getCastKind() == CK_NoOp)
      return CE->getSubExpr();

  return E;
}

static Expr *IgnoreImplicitSingleStep(Expr *E) {
  Expr *SubE = IgnoreImpCastsSingleStep(E);
  if (SubE != E)
    return SubE;

  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
    return MTE->GetTemporaryExpr();

  if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
    return BTE->getSubExpr();

  return E;
}

static Expr *IgnoreParensSingleStep(Expr *E) {
  if (auto *PE = dyn_cast<ParenExpr>(E))
    return PE->getSubExpr();

  if (auto *UO = dyn_cast<UnaryOperator>(E)) {
    if (UO->getOpcode() == UO_Extension)
      return UO->getSubExpr();
  }

  else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
    if (!GSE->isResultDependent())
      return GSE->getResultExpr();
  }

  else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
    if (!CE->isConditionDependent())
      return CE->getChosenSubExpr();
  }

  else if (auto *CE = dyn_cast<ConstantExpr>(E))
    return CE->getSubExpr();

  return E;
}

static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
  if (auto *CE = dyn_cast<CastExpr>(E)) {
    // We ignore integer <-> casts that are of the same width, ptr<->ptr and
    // ptr<->int casts of the same width. We also ignore all identity casts.
    Expr *SubExpr = CE->getSubExpr();
    bool IsIdentityCast =
        Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
    bool IsSameWidthCast =
        (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
        (SubExpr->getType()->isPointerType() ||
         SubExpr->getType()->isIntegralType(Ctx)) &&
        (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));

    if (IsIdentityCast || IsSameWidthCast)
      return SubExpr;
  }

  else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    return NTTP->getReplacement();

  return E;
}

static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
template <typename FnTy, typename... FnTys>
static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
  return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
}

/// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
/// Recursively apply each of the functions to E until reaching a fixed point.
/// Note that a null E is valid; in this case nothing is done.
template <typename... FnTys>
static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
  Expr *LastE = nullptr;
  while (E != LastE) {
    LastE = E;
    E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
  }
  return E;
}

Expr *Expr::IgnoreImpCasts() {
  return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
}

Expr *Expr::IgnoreCasts() {
  return IgnoreExprNodes(this, IgnoreCastsSingleStep);
}

Expr *Expr::IgnoreImplicit() {
  return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
}

Expr *Expr::IgnoreParens() {
  return IgnoreExprNodes(this, IgnoreParensSingleStep);
}

Expr *Expr::IgnoreParenImpCasts() {
  return IgnoreExprNodes(this, IgnoreParensSingleStep,
                         IgnoreImpCastsExtraSingleStep);
}

Expr *Expr::IgnoreParenCasts() {
  return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
}

Expr *Expr::IgnoreConversionOperator() {
  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
      return MCE->getImplicitObjectArgument();
  }
  return this;
}

Expr *Expr::IgnoreParenLValueCasts() {
  return IgnoreExprNodes(this, IgnoreParensSingleStep,
                         IgnoreLValueCastsSingleStep);
}

Expr *Expr::ignoreParenBaseCasts() {
  return IgnoreExprNodes(this, IgnoreParensSingleStep,
                         IgnoreBaseCastsSingleStep);
}

Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
  return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
    return IgnoreNoopCastsSingleStep(Ctx, E);
  });
}

bool Expr::isDefaultArgument() const {
  const Expr *E = this;
  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
    E = M->GetTemporaryExpr();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
    E = ICE->getSubExprAsWritten();

  return isa<CXXDefaultArgExpr>(E);
}

/// Skip over any no-op casts and any temporary-binding
/// expressions.
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
    E = M->GetTemporaryExpr();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_NoOp)
      E = ICE->getSubExpr();
    else
      break;
  }

  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
    E = BE->getSubExpr();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_NoOp)
      E = ICE->getSubExpr();
    else
      break;
  }

  return E->IgnoreParens();
}

/// isTemporaryObject - Determines if this expression produces a
/// temporary of the given class type.
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
    return false;

  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);

  // Temporaries are by definition pr-values of class type.
  if (!E->Classify(C).isPRValue()) {
    // In this context, property reference is a message call and is pr-value.
    if (!isa<ObjCPropertyRefExpr>(E))
      return false;
  }

  // Black-list a few cases which yield pr-values of class type that don't
  // refer to temporaries of that type:

  // - implicit derived-to-base conversions
  if (isa<ImplicitCastExpr>(E)) {
    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase:
      return false;
    default:
      break;
    }
  }

  // - member expressions (all)
  if (isa<MemberExpr>(E))
    return false;

  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
    if (BO->isPtrMemOp())
      return false;

  // - opaque values (all)
  if (isa<OpaqueValueExpr>(E))
    return false;

  return true;
}

bool Expr::isImplicitCXXThis() const {
  const Expr *E = this;

  // Strip away parentheses and casts we don't care about.
  while (true) {
    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
      E = Paren->getSubExpr();
      continue;
    }

    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
      if (ICE->getCastKind() == CK_NoOp ||
          ICE->getCastKind() == CK_LValueToRValue ||
          ICE->getCastKind() == CK_DerivedToBase ||
          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
        E = ICE->getSubExpr();
        continue;
      }
    }

    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
      if (UnOp->getOpcode() == UO_Extension) {
        E = UnOp->getSubExpr();
        continue;
      }
    }

    if (const MaterializeTemporaryExpr *M
                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = M->GetTemporaryExpr();
      continue;
    }

    break;
  }

  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
    return This->isImplicit();

  return false;
}

/// hasAnyTypeDependentArguments - Determines if any of the expressions
/// in Exprs is type-dependent.
bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
  for (unsigned I = 0; I < Exprs.size(); ++I)
    if (Exprs[I]->isTypeDependent())
      return true;

  return false;
}

bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
                                 const Expr **Culprit) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  // This function is attempting whether an expression is an initializer
  // which can be evaluated at compile-time. It very closely parallels
  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
  // to isEvaluatable most of the time.
  //
  // If we ever capture reference-binding directly in the AST, we can
  // kill the second parameter.

  if (IsForRef) {
    EvalResult Result;
    if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
      return true;
    if (Culprit)
      *Culprit = this;
    return false;
  }

  switch (getStmtClass()) {
  default: break;
  case StringLiteralClass:
  case ObjCEncodeExprClass:
    return true;
  case CXXTemporaryObjectExprClass:
  case CXXConstructExprClass: {
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);

    if (CE->getConstructor()->isTrivial() &&
        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
      // Trivial default constructor
      if (!CE->getNumArgs()) return true;

      // Trivial copy constructor
      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
      return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
    }

    break;
  }
  case ConstantExprClass: {
    // FIXME: We should be able to return "true" here, but it can lead to extra
    // error messages. E.g. in Sema/array-init.c.
    const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
    return Exp->isConstantInitializer(Ctx, false, Culprit);
  }
  case CompoundLiteralExprClass: {
    // This handles gcc's extension that allows global initializers like
    // "struct x {int x;} x = (struct x) {};".
    // FIXME: This accepts other cases it shouldn't!
    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
    return Exp->isConstantInitializer(Ctx, false, Culprit);
  }
  case DesignatedInitUpdateExprClass: {
    const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
    return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
           DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
  }
  case InitListExprClass: {
    const InitListExpr *ILE = cast<InitListExpr>(this);
    assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
    if (ILE->getType()->isArrayType()) {
      unsigned numInits = ILE->getNumInits();
      for (unsigned i = 0; i < numInits; i++) {
        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
          return false;
      }
      return true;
    }

    if (ILE->getType()->isRecordType()) {
      unsigned ElementNo = 0;
      RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
      for (const auto *Field : RD->fields()) {
        // If this is a union, skip all the fields that aren't being initialized.
        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
          continue;

        // Don't emit anonymous bitfields, they just affect layout.
        if (Field->isUnnamedBitfield())
          continue;

        if (ElementNo < ILE->getNumInits()) {
          const Expr *Elt = ILE->getInit(ElementNo++);
          if (Field->isBitField()) {
            // Bitfields have to evaluate to an integer.
            EvalResult Result;
            if (!Elt->EvaluateAsInt(Result, Ctx)) {
              if (Culprit)
                *Culprit = Elt;
              return false;
            }
          } else {
            bool RefType = Field->getType()->isReferenceType();
            if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
              return false;
          }
        }
      }
      return true;
    }

    break;
  }
  case ImplicitValueInitExprClass:
  case NoInitExprClass:
    return true;
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
  case GenericSelectionExprClass:
    return cast<GenericSelectionExpr>(this)->getResultExpr()
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
  case ChooseExprClass:
    if (cast<ChooseExpr>(this)->isConditionDependent()) {
      if (Culprit)
        *Culprit = this;
      return false;
    }
    return cast<ChooseExpr>(this)->getChosenSubExpr()
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
  case UnaryOperatorClass: {
    const UnaryOperator* Exp = cast<UnaryOperator>(this);
    if (Exp->getOpcode() == UO_Extension)
      return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
    break;
  }
  case CXXFunctionalCastExprClass:
  case CXXStaticCastExprClass:
  case ImplicitCastExprClass:
  case CStyleCastExprClass:
  case ObjCBridgedCastExprClass:
  case CXXDynamicCastExprClass:
  case CXXReinterpretCastExprClass:
  case CXXConstCastExprClass: {
    const CastExpr *CE = cast<CastExpr>(this);

    // Handle misc casts we want to ignore.
    if (CE->getCastKind() == CK_NoOp ||
        CE->getCastKind() == CK_LValueToRValue ||
        CE->getCastKind() == CK_ToUnion ||
        CE->getCastKind() == CK_ConstructorConversion ||
        CE->getCastKind() == CK_NonAtomicToAtomic ||
        CE->getCastKind() == CK_AtomicToNonAtomic ||
        CE->getCastKind() == CK_IntToOCLSampler)
      return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);

    break;
  }
  case MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
      ->isConstantInitializer(Ctx, false, Culprit);

  case SubstNonTypeTemplateParmExprClass:
    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
      ->isConstantInitializer(Ctx, false, Culprit);
  case CXXDefaultArgExprClass:
    return cast<CXXDefaultArgExpr>(this)->getExpr()
      ->isConstantInitializer(Ctx, false, Culprit);
  case CXXDefaultInitExprClass:
    return cast<CXXDefaultInitExpr>(this)->getExpr()
      ->isConstantInitializer(Ctx, false, Culprit);
  }
  // Allow certain forms of UB in constant initializers: signed integer
  // overflow and floating-point division by zero. We'll give a warning on
  // these, but they're common enough that we have to accept them.
  if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
    return true;
  if (Culprit)
    *Culprit = this;
  return false;
}

bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
  const FunctionDecl* FD = getDirectCallee();
  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
              FD->getBuiltinID() != Builtin::BI__builtin_assume))
    return false;

  const Expr* Arg = getArg(0);
  bool ArgVal;
  return !Arg->isValueDependent() &&
         Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
}

namespace {
  /// Look for any side effects within a Stmt.
  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
    typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
    const bool IncludePossibleEffects;
    bool HasSideEffects;

  public:
    explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
      : Inherited(Context),
        IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }

    bool hasSideEffects() const { return HasSideEffects; }

    void VisitExpr(const Expr *E) {
      if (!HasSideEffects &&
          E->HasSideEffects(Context, IncludePossibleEffects))
        HasSideEffects = true;
    }
  };
}

bool Expr::HasSideEffects(const ASTContext &Ctx,
                          bool IncludePossibleEffects) const {
  // In circumstances where we care about definite side effects instead of
  // potential side effects, we want to ignore expressions that are part of a
  // macro expansion as a potential side effect.
  if (!IncludePossibleEffects && getExprLoc().isMacroID())
    return false;

  if (isInstantiationDependent())
    return IncludePossibleEffects;

  switch (getStmtClass()) {
  case NoStmtClass:
  #define ABSTRACT_STMT(Type)
  #define STMT(Type, Base) case Type##Class:
  #define EXPR(Type, Base)
  #include "clang/AST/StmtNodes.inc"
    llvm_unreachable("unexpected Expr kind");

  case DependentScopeDeclRefExprClass:
  case CXXUnresolvedConstructExprClass:
  case CXXDependentScopeMemberExprClass:
  case UnresolvedLookupExprClass:
  case UnresolvedMemberExprClass:
  case PackExpansionExprClass:
  case SubstNonTypeTemplateParmPackExprClass:
  case FunctionParmPackExprClass:
  case TypoExprClass:
  case CXXFoldExprClass:
    llvm_unreachable("shouldn't see dependent / unresolved nodes here");

  case DeclRefExprClass:
  case ObjCIvarRefExprClass:
  case PredefinedExprClass:
  case IntegerLiteralClass:
  case FixedPointLiteralClass:
  case FloatingLiteralClass:
  case ImaginaryLiteralClass:
  case StringLiteralClass:
  case CharacterLiteralClass:
  case OffsetOfExprClass:
  case ImplicitValueInitExprClass:
  case UnaryExprOrTypeTraitExprClass:
  case AddrLabelExprClass:
  case GNUNullExprClass:
  case ArrayInitIndexExprClass:
  case NoInitExprClass:
  case CXXBoolLiteralExprClass:
  case CXXNullPtrLiteralExprClass:
  case CXXThisExprClass:
  case CXXScalarValueInitExprClass:
  case TypeTraitExprClass:
  case ArrayTypeTraitExprClass:
  case ExpressionTraitExprClass:
  case CXXNoexceptExprClass:
  case SizeOfPackExprClass:
  case ObjCStringLiteralClass:
  case ObjCEncodeExprClass:
  case ObjCBoolLiteralExprClass:
  case ObjCAvailabilityCheckExprClass:
  case CXXUuidofExprClass:
  case OpaqueValueExprClass:
  case SourceLocExprClass:
  case ConceptSpecializationExprClass:
    // These never have a side-effect.
    return false;

  case ConstantExprClass:
    // FIXME: Move this into the "return false;" block above.
    return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
        Ctx, IncludePossibleEffects);

  case CallExprClass:
  case CXXOperatorCallExprClass:
  case CXXMemberCallExprClass:
  case CUDAKernelCallExprClass:
  case UserDefinedLiteralClass: {
    // We don't know a call definitely has side effects, except for calls
    // to pure/const functions that definitely don't.
    // If the call itself is considered side-effect free, check the operands.
    const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
    bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
    if (IsPure || !IncludePossibleEffects)
      break;
    return true;
  }

  case BlockExprClass:
  case CXXBindTemporaryExprClass:
    if (!IncludePossibleEffects)
      break;
    return true;

  case MSPropertyRefExprClass:
  case MSPropertySubscriptExprClass:
  case CompoundAssignOperatorClass:
  case VAArgExprClass:
  case AtomicExprClass:
  case CXXThrowExprClass:
  case CXXNewExprClass:
  case CXXDeleteExprClass:
  case CoawaitExprClass:
  case DependentCoawaitExprClass:
  case CoyieldExprClass:
    // These always have a side-effect.
    return true;

  case StmtExprClass: {
    // StmtExprs have a side-effect if any substatement does.
    SideEffectFinder Finder(Ctx, IncludePossibleEffects);
    Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
    return Finder.hasSideEffects();
  }

  case ExprWithCleanupsClass:
    if (IncludePossibleEffects)
      if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
        return true;
    break;

  case ParenExprClass:
  case ArraySubscriptExprClass:
  case OMPArraySectionExprClass:
  case MemberExprClass:
  case ConditionalOperatorClass:
  case BinaryConditionalOperatorClass:
  case CompoundLiteralExprClass:
  case ExtVectorElementExprClass:
  case DesignatedInitExprClass:
  case DesignatedInitUpdateExprClass:
  case ArrayInitLoopExprClass:
  case ParenListExprClass:
  case CXXPseudoDestructorExprClass:
  case CXXRewrittenBinaryOperatorClass:
  case CXXStdInitializerListExprClass:
  case SubstNonTypeTemplateParmExprClass:
  case MaterializeTemporaryExprClass:
  case ShuffleVectorExprClass:
  case ConvertVectorExprClass:
  case AsTypeExprClass:
    // These have a side-effect if any subexpression does.
    break;

  case UnaryOperatorClass:
    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
      return true;
    break;

  case BinaryOperatorClass:
    if (cast<BinaryOperator>(this)->isAssignmentOp())
      return true;
    break;

  case InitListExprClass:
    // FIXME: The children for an InitListExpr doesn't include the array filler.
    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
        return true;
    break;

  case GenericSelectionExprClass:
    return cast<GenericSelectionExpr>(this)->getResultExpr()->
        HasSideEffects(Ctx, IncludePossibleEffects);

  case ChooseExprClass:
    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
        Ctx, IncludePossibleEffects);

  case CXXDefaultArgExprClass:
    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
        Ctx, IncludePossibleEffects);

  case CXXDefaultInitExprClass: {
    const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
    if (const Expr *E = FD->getInClassInitializer())
      return E->HasSideEffects(Ctx, IncludePossibleEffects);
    // If we've not yet parsed the initializer, assume it has side-effects.
    return true;
  }

  case CXXDynamicCastExprClass: {
    // A dynamic_cast expression has side-effects if it can throw.
    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
    if (DCE->getTypeAsWritten()->isReferenceType() &&
        DCE->getCastKind() == CK_Dynamic)
      return true;
    }
    LLVM_FALLTHROUGH;
  case ImplicitCastExprClass:
  case CStyleCastExprClass:
  case CXXStaticCastExprClass:
  case CXXReinterpretCastExprClass:
  case CXXConstCastExprClass:
  case CXXFunctionalCastExprClass:
  case BuiltinBitCastExprClass: {
    // While volatile reads are side-effecting in both C and C++, we treat them
    // as having possible (not definite) side-effects. This allows idiomatic
    // code to behave without warning, such as sizeof(*v) for a volatile-
    // qualified pointer.
    if (!IncludePossibleEffects)
      break;

    const CastExpr *CE = cast<CastExpr>(this);
    if (CE->getCastKind() == CK_LValueToRValue &&
        CE->getSubExpr()->getType().isVolatileQualified())
      return true;
    break;
  }

  case CXXTypeidExprClass:
    // typeid might throw if its subexpression is potentially-evaluated, so has
    // side-effects in that case whether or not its subexpression does.
    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();

  case CXXConstructExprClass:
  case CXXTemporaryObjectExprClass: {
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
    if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
      return true;
    // A trivial constructor does not add any side-effects of its own. Just look
    // at its arguments.
    break;
  }

  case CXXInheritedCtorInitExprClass: {
    const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
    if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
      return true;
    break;
  }

  case LambdaExprClass: {
    const LambdaExpr *LE = cast<LambdaExpr>(this);
    for (Expr *E : LE->capture_inits())
      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
        return true;
    return false;
  }

  case PseudoObjectExprClass: {
    // Only look for side-effects in the semantic form, and look past
    // OpaqueValueExpr bindings in that form.
    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
                                                    E = PO->semantics_end();
         I != E; ++I) {
      const Expr *Subexpr = *I;
      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
        Subexpr = OVE->getSourceExpr();
      if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
        return true;
    }
    return false;
  }

  case ObjCBoxedExprClass:
  case ObjCArrayLiteralClass:
  case ObjCDictionaryLiteralClass:
  case ObjCSelectorExprClass:
  case ObjCProtocolExprClass:
  case ObjCIsaExprClass:
  case ObjCIndirectCopyRestoreExprClass:
  case ObjCSubscriptRefExprClass:
  case ObjCBridgedCastExprClass:
  case ObjCMessageExprClass:
  case ObjCPropertyRefExprClass:
  // FIXME: Classify these cases better.
    if (IncludePossibleEffects)
      return true;
    break;
  }

  // Recurse to children.
  for (const Stmt *SubStmt : children())
    if (SubStmt &&
        cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
      return true;

  return false;
}

namespace {
  /// Look for a call to a non-trivial function within an expression.
  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
  {
    typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;

    bool NonTrivial;

  public:
    explicit NonTrivialCallFinder(const ASTContext &Context)
      : Inherited(Context), NonTrivial(false) { }

    bool hasNonTrivialCall() const { return NonTrivial; }

    void VisitCallExpr(const CallExpr *E) {
      if (const CXXMethodDecl *Method
          = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
        if (Method->isTrivial()) {
          // Recurse to children of the call.
          Inherited::VisitStmt(E);
          return;
        }
      }

      NonTrivial = true;
    }

    void VisitCXXConstructExpr(const CXXConstructExpr *E) {
      if (E->getConstructor()->isTrivial()) {
        // Recurse to children of the call.
        Inherited::VisitStmt(E);
        return;
      }

      NonTrivial = true;
    }

    void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
      if (E->getTemporary()->getDestructor()->isTrivial()) {
        Inherited::VisitStmt(E);
        return;
      }

      NonTrivial = true;
    }
  };
}

bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
  NonTrivialCallFinder Finder(Ctx);
  Finder.Visit(this);
  return Finder.hasNonTrivialCall();
}

/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
/// pointer constant or not, as well as the specific kind of constant detected.
/// Null pointer constants can be integer constant expressions with the
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
/// (a GNU extension).
Expr::NullPointerConstantKind
Expr::isNullPointerConstant(ASTContext &Ctx,
                            NullPointerConstantValueDependence NPC) const {
  if (isValueDependent() &&
      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
    switch (NPC) {
    case NPC_NeverValueDependent:
      llvm_unreachable("Unexpected value dependent expression!");
    case NPC_ValueDependentIsNull:
      if (isTypeDependent() || getType()->isIntegralType(Ctx))
        return NPCK_ZeroExpression;
      else
        return NPCK_NotNull;

    case NPC_ValueDependentIsNotNull:
      return NPCK_NotNull;
    }
  }

  // Strip off a cast to void*, if it exists. Except in C++.
  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
    if (!Ctx.getLangOpts().CPlusPlus) {
      // Check that it is a cast to void*.
      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
        QualType Pointee = PT->getPointeeType();
        Qualifiers Qs = Pointee.getQualifiers();
        // Only (void*)0 or equivalent are treated as nullptr. If pointee type
        // has non-default address space it is not treated as nullptr.
        // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
        // since it cannot be assigned to a pointer to constant address space.
        if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
             Pointee.getAddressSpace() == LangAS::opencl_generic) ||
            (Ctx.getLangOpts().OpenCL &&
             Ctx.getLangOpts().OpenCLVersion < 200 &&
             Pointee.getAddressSpace() == LangAS::opencl_private))
          Qs.removeAddressSpace();

        if (Pointee->isVoidType() && Qs.empty() && // to void*
            CE->getSubExpr()->getType()->isIntegerType()) // from int
          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
      }
    }
  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
    // Ignore the ImplicitCastExpr type entirely.
    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
    // Accept ((void*)0) as a null pointer constant, as many other
    // implementations do.
    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const GenericSelectionExpr *GE =
               dyn_cast<GenericSelectionExpr>(this)) {
    if (GE->isResultDependent())
      return NPCK_NotNull;
    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
    if (CE->isConditionDependent())
      return NPCK_NotNull;
    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const CXXDefaultArgExpr *DefaultArg
               = dyn_cast<CXXDefaultArgExpr>(this)) {
    // See through default argument expressions.
    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const CXXDefaultInitExpr *DefaultInit
               = dyn_cast<CXXDefaultInitExpr>(this)) {
    // See through default initializer expressions.
    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (isa<GNUNullExpr>(this)) {
    // The GNU __null extension is always a null pointer constant.
    return NPCK_GNUNull;
  } else if (const MaterializeTemporaryExpr *M
                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
    if (const Expr *Source = OVE->getSourceExpr())
      return Source->isNullPointerConstant(Ctx, NPC);
  }

  // C++11 nullptr_t is always a null pointer constant.
  if (getType()->isNullPtrType())
    return NPCK_CXX11_nullptr;

  if (const RecordType *UT = getType()->getAsUnionType())
    if (!Ctx.getLangOpts().CPlusPlus11 &&
        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
        const Expr *InitExpr = CLE->getInitializer();
        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
      }
  // This expression must be an integer type.
  if (!getType()->isIntegerType() ||
      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
    return NPCK_NotNull;

  if (Ctx.getLangOpts().CPlusPlus11) {
    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
    // value zero or a prvalue of type std::nullptr_t.
    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
    if (Lit && !Lit->getValue())
      return NPCK_ZeroLiteral;
    else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
      return NPCK_NotNull;
  } else {
    // If we have an integer constant expression, we need to *evaluate* it and
    // test for the value 0.
    if (!isIntegerConstantExpr(Ctx))
      return NPCK_NotNull;
  }

  if (EvaluateKnownConstInt(Ctx) != 0)
    return NPCK_NotNull;

  if (isa<IntegerLiteral>(this))
    return NPCK_ZeroLiteral;
  return NPCK_ZeroExpression;
}

/// If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
  const Expr *E = this;
  while (true) {
    assert((E->getValueKind() == VK_LValue &&
            E->getObjectKind() == OK_ObjCProperty) &&
           "expression is not a property reference");
    E = E->IgnoreParenCasts();
    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
      if (BO->getOpcode() == BO_Comma) {
        E = BO->getRHS();
        continue;
      }
    }

    break;
  }

  return cast<ObjCPropertyRefExpr>(E);
}

bool Expr::isObjCSelfExpr() const {
  const Expr *E = IgnoreParenImpCasts();

  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  if (!DRE)
    return false;

  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
  if (!Param)
    return false;

  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
  if (!M)
    return false;

  return M->getSelfDecl() == Param;
}

FieldDecl *Expr::getSourceBitField() {
  Expr *E = this->IgnoreParens();

  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_LValueToRValue ||
        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
      E = ICE->getSubExpr()->IgnoreParens();
    else
      break;
  }

  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
      if (Field->isBitField())
        return Field;

  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
    FieldDecl *Ivar = IvarRef->getDecl();
    if (Ivar->isBitField())
      return Ivar;
  }

  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
      if (Field->isBitField())
        return Field;

    if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
      if (Expr *E = BD->getBinding())
        return E->getSourceBitField();
  }

  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
    if (BinOp->isAssignmentOp() && BinOp->getLHS())
      return BinOp->getLHS()->getSourceBitField();

    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
      return BinOp->getRHS()->getSourceBitField();
  }

  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
    if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
      return UnOp->getSubExpr()->getSourceBitField();

  return nullptr;
}

bool Expr::refersToVectorElement() const {
  // FIXME: Why do we not just look at the ObjectKind here?
  const Expr *E = this->IgnoreParens();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getValueKind() != VK_RValue &&
        ICE->getCastKind() == CK_NoOp)
      E = ICE->getSubExpr()->IgnoreParens();
    else
      break;
  }

  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
    return ASE->getBase()->getType()->isVectorType();

  if (isa<ExtVectorElementExpr>(E))
    return true;

  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
    if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
      if (auto *E = BD->getBinding())
        return E->refersToVectorElement();

  return false;
}

bool Expr::refersToGlobalRegisterVar() const {
  const Expr *E = this->IgnoreParenImpCasts();

  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
      if (VD->getStorageClass() == SC_Register &&
          VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
        return true;

  return false;
}

bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
  E1 = E1->IgnoreParens();
  E2 = E2->IgnoreParens();

  if (E1->getStmtClass() != E2->getStmtClass())
    return false;

  switch (E1->getStmtClass()) {
    default:
      return false;
    case CXXThisExprClass:
      return true;
    case DeclRefExprClass: {
      // DeclRefExpr without an ImplicitCastExpr can happen for integral
      // template parameters.
      const auto *DRE1 = cast<DeclRefExpr>(E1);
      const auto *DRE2 = cast<DeclRefExpr>(E2);
      return DRE1->isRValue() && DRE2->isRValue() &&
             DRE1->getDecl() == DRE2->getDecl();
    }
    case ImplicitCastExprClass: {
      // Peel off implicit casts.
      while (true) {
        const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
        const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
        if (!ICE1 || !ICE2)
          return false;
        if (ICE1->getCastKind() != ICE2->getCastKind())
          return false;
        E1 = ICE1->getSubExpr()->IgnoreParens();
        E2 = ICE2->getSubExpr()->IgnoreParens();
        // The final cast must be one of these types.
        if (ICE1->getCastKind() == CK_LValueToRValue ||
            ICE1->getCastKind() == CK_ArrayToPointerDecay ||
            ICE1->getCastKind() == CK_FunctionToPointerDecay) {
          break;
        }
      }

      const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
      const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
      if (DRE1 && DRE2)
        return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());

      const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
      const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
      if (Ivar1 && Ivar2) {
        return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
               declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
      }

      const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
      const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
      if (Array1 && Array2) {
        if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
          return false;

        auto Idx1 = Array1->getIdx();
        auto Idx2 = Array2->getIdx();
        const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
        const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
        if (Integer1 && Integer2) {
          if (!llvm::APInt::isSameValue(Integer1->getValue(),
                                        Integer2->getValue()))
            return false;
        } else {
          if (!isSameComparisonOperand(Idx1, Idx2))
            return false;
        }

        return true;
      }

      // Walk the MemberExpr chain.
      while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
        const auto *ME1 = cast<MemberExpr>(E1);
        const auto *ME2 = cast<MemberExpr>(E2);
        if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
          return false;
        if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
          if (D->isStaticDataMember())
            return true;
        E1 = ME1->getBase()->IgnoreParenImpCasts();
        E2 = ME2->getBase()->IgnoreParenImpCasts();
      }

      if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
        return true;

      // A static member variable can end the MemberExpr chain with either
      // a MemberExpr or a DeclRefExpr.
      auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
        if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
          return DRE->getDecl();
        if (const auto *ME = dyn_cast<MemberExpr>(E))
          return ME->getMemberDecl();
        return nullptr;
      };

      const ValueDecl *VD1 = getAnyDecl(E1);
      const ValueDecl *VD2 = getAnyDecl(E2);
      return declaresSameEntity(VD1, VD2);
    }
  }
}

/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool ExtVectorElementExpr::isArrow() const {
  return getBase()->getType()->isPointerType();
}

unsigned ExtVectorElementExpr::getNumElements() const {
  if (const VectorType *VT = getType()->getAs<VectorType>())
    return VT->getNumElements();
  return 1;
}

/// containsDuplicateElements - Return true if any element access is repeated.
bool ExtVectorElementExpr::containsDuplicateElements() const {
  // FIXME: Refactor this code to an accessor on the AST node which returns the
  // "type" of component access, and share with code below and in Sema.
  StringRef Comp = Accessor->getName();

  // Halving swizzles do not contain duplicate elements.
  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
    return false;

  // Advance past s-char prefix on hex swizzles.
  if (Comp[0] == 's' || Comp[0] == 'S')
    Comp = Comp.substr(1);

  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
        return true;

  return false;
}

/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
void ExtVectorElementExpr::getEncodedElementAccess(
    SmallVectorImpl<uint32_t> &Elts) const {
  StringRef Comp = Accessor->getName();
  bool isNumericAccessor = false;
  if (Comp[0] == 's' || Comp[0] == 'S') {
    Comp = Comp.substr(1);
    isNumericAccessor = true;
  }

  bool isHi =   Comp == "hi";
  bool isLo =   Comp == "lo";
  bool isEven = Comp == "even";
  bool isOdd  = Comp == "odd";

  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
    uint64_t Index;

    if (isHi)
      Index = e + i;
    else if (isLo)
      Index = i;
    else if (isEven)
      Index = 2 * i;
    else if (isOdd)
      Index = 2 * i + 1;
    else
      Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);

    Elts.push_back(Index);
  }
}

ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
                                     QualType Type, SourceLocation BLoc,
                                     SourceLocation RP)
   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
          Type->isDependentType(), Type->isDependentType(),
          Type->isInstantiationDependentType(),
          Type->containsUnexpandedParameterPack()),
     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
{
  SubExprs = new (C) Stmt*[args.size()];
  for (unsigned i = 0; i != args.size(); i++) {
    if (args[i]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (args[i]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (args[i]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (args[i]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    SubExprs[i] = args[i];
  }
}

void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
  if (SubExprs) C.Deallocate(SubExprs);

  this->NumExprs = Exprs.size();
  SubExprs = new (C) Stmt*[NumExprs];
  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
}

GenericSelectionExpr::GenericSelectionExpr(
    const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
    bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
    : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
           AssocExprs[ResultIndex]->getValueKind(),
           AssocExprs[ResultIndex]->getObjectKind(),
           AssocExprs[ResultIndex]->isTypeDependent(),
           AssocExprs[ResultIndex]->isValueDependent(),
           AssocExprs[ResultIndex]->isInstantiationDependent(),
           ContainsUnexpandedParameterPack),
      NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
      DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  assert(AssocTypes.size() == AssocExprs.size() &&
         "Must have the same number of association expressions"
         " and TypeSourceInfo!");
  assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");

  GenericSelectionExprBits.GenericLoc = GenericLoc;
  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
  std::copy(AssocExprs.begin(), AssocExprs.end(),
            getTrailingObjects<Stmt *>() + AssocExprStartIndex);
  std::copy(AssocTypes.begin(), AssocTypes.end(),
            getTrailingObjects<TypeSourceInfo *>());
}

GenericSelectionExpr::GenericSelectionExpr(
    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
    bool ContainsUnexpandedParameterPack)
    : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
           OK_Ordinary,
           /*isTypeDependent=*/true,
           /*isValueDependent=*/true,
           /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
      NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
      DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  assert(AssocTypes.size() == AssocExprs.size() &&
         "Must have the same number of association expressions"
         " and TypeSourceInfo!");

  GenericSelectionExprBits.GenericLoc = GenericLoc;
  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
  std::copy(AssocExprs.begin(), AssocExprs.end(),
            getTrailingObjects<Stmt *>() + AssocExprStartIndex);
  std::copy(AssocTypes.begin(), AssocTypes.end(),
            getTrailingObjects<TypeSourceInfo *>());
}

GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
    : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}

GenericSelectionExpr *GenericSelectionExpr::Create(
    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
    bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
  unsigned NumAssocs = AssocExprs.size();
  void *Mem = Context.Allocate(
      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
      alignof(GenericSelectionExpr));
  return new (Mem) GenericSelectionExpr(
      Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
      RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
}

GenericSelectionExpr *GenericSelectionExpr::Create(
    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
    bool ContainsUnexpandedParameterPack) {
  unsigned NumAssocs = AssocExprs.size();
  void *Mem = Context.Allocate(
      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
      alignof(GenericSelectionExpr));
  return new (Mem) GenericSelectionExpr(
      Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
      RParenLoc, ContainsUnexpandedParameterPack);
}

GenericSelectionExpr *
GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
                                  unsigned NumAssocs) {
  void *Mem = Context.Allocate(
      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
      alignof(GenericSelectionExpr));
  return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
}

//===----------------------------------------------------------------------===//
//  DesignatedInitExpr
//===----------------------------------------------------------------------===//

IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
  assert(Kind == FieldDesignator && "Only valid on a field designator");
  if (Field.NameOrField & 0x01)
    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  else
    return getField()->getIdentifier();
}

DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
                                       llvm::ArrayRef<Designator> Designators,
                                       SourceLocation EqualOrColonLoc,
                                       bool GNUSyntax,
                                       ArrayRef<Expr*> IndexExprs,
                                       Expr *Init)
  : Expr(DesignatedInitExprClass, Ty,
         Init->getValueKind(), Init->getObjectKind(),
         Init->isTypeDependent(), Init->isValueDependent(),
         Init->isInstantiationDependent(),
         Init->containsUnexpandedParameterPack()),
    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
    NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
  this->Designators = new (C) Designator[NumDesignators];

  // Record the initializer itself.
  child_iterator Child = child_begin();
  *Child++ = Init;

  // Copy the designators and their subexpressions, computing
  // value-dependence along the way.
  unsigned IndexIdx = 0;
  for (unsigned I = 0; I != NumDesignators; ++I) {
    this->Designators[I] = Designators[I];

    if (this->Designators[I].isArrayDesignator()) {
      // Compute type- and value-dependence.
      Expr *Index = IndexExprs[IndexIdx];
      if (Index->isTypeDependent() || Index->isValueDependent())
        ExprBits.TypeDependent = ExprBits.ValueDependent = true;
      if (Index->isInstantiationDependent())
        ExprBits.InstantiationDependent = true;
      // Propagate unexpanded parameter packs.
      if (Index->containsUnexpandedParameterPack())
        ExprBits.ContainsUnexpandedParameterPack = true;

      // Copy the index expressions into permanent storage.
      *Child++ = IndexExprs[IndexIdx++];
    } else if (this->Designators[I].isArrayRangeDesignator()) {
      // Compute type- and value-dependence.
      Expr *Start = IndexExprs[IndexIdx];
      Expr *End = IndexExprs[IndexIdx + 1];
      if (Start->isTypeDependent() || Start->isValueDependent() ||
          End->isTypeDependent() || End->isValueDependent()) {
        ExprBits.TypeDependent = ExprBits.ValueDependent = true;
        ExprBits.InstantiationDependent = true;
      } else if (Start->isInstantiationDependent() ||
                 End->isInstantiationDependent()) {
        ExprBits.InstantiationDependent = true;
      }

      // Propagate unexpanded parameter packs.
      if (Start->containsUnexpandedParameterPack() ||
          End->containsUnexpandedParameterPack())
        ExprBits.ContainsUnexpandedParameterPack = true;

      // Copy the start/end expressions into permanent storage.
      *Child++ = IndexExprs[IndexIdx++];
      *Child++ = IndexExprs[IndexIdx++];
    }
  }

  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
}

DesignatedInitExpr *
DesignatedInitExpr::Create(const ASTContext &C,
                           llvm::ArrayRef<Designator> Designators,
                           ArrayRef<Expr*> IndexExprs,
                           SourceLocation ColonOrEqualLoc,
                           bool UsesColonSyntax, Expr *Init) {
  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
                         alignof(DesignatedInitExpr));
  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
                                      ColonOrEqualLoc, UsesColonSyntax,
                                      IndexExprs, Init);
}

DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
                                                    unsigned NumIndexExprs) {
  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
                         alignof(DesignatedInitExpr));
  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
}

void DesignatedInitExpr::setDesignators(const ASTContext &C,
                                        const Designator *Desigs,
                                        unsigned NumDesigs) {
  Designators = new (C) Designator[NumDesigs];
  NumDesignators = NumDesigs;
  for (unsigned I = 0; I != NumDesigs; ++I)
    Designators[I] = Desigs[I];
}

SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
  if (size() == 1)
    return DIE->getDesignator(0)->getSourceRange();
  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
                     DIE->getDesignator(size() - 1)->getEndLoc());
}

SourceLocation DesignatedInitExpr::getBeginLoc() const {
  SourceLocation StartLoc;
  auto *DIE = const_cast<DesignatedInitExpr *>(this);
  Designator &First = *DIE->getDesignator(0);
  if (First.isFieldDesignator()) {
    if (GNUSyntax)
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
    else
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  } else
    StartLoc =
      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  return StartLoc;
}

SourceLocation DesignatedInitExpr::getEndLoc() const {
  return getInit()->getEndLoc();
}

Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  return getSubExpr(D.ArrayOrRange.Index + 1);
}

Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
  assert(D.Kind == Designator::ArrayRangeDesignator &&
         "Requires array range designator");
  return getSubExpr(D.ArrayOrRange.Index + 1);
}

Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
  assert(D.Kind == Designator::ArrayRangeDesignator &&
         "Requires array range designator");
  return getSubExpr(D.ArrayOrRange.Index + 2);
}

/// Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
                                          const Designator *First,
                                          const Designator *Last) {
  unsigned NumNewDesignators = Last - First;
  if (NumNewDesignators == 0) {
    std::copy_backward(Designators + Idx + 1,
                       Designators + NumDesignators,
                       Designators + Idx);
    --NumNewDesignators;
    return;
  } else if (NumNewDesignators == 1) {
    Designators[Idx] = *First;
    return;
  }

  Designator *NewDesignators
    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
  std::copy(Designators, Designators + Idx, NewDesignators);
  std::copy(First, Last, NewDesignators + Idx);
  std::copy(Designators + Idx + 1, Designators + NumDesignators,
            NewDesignators + Idx + NumNewDesignators);
  Designators = NewDesignators;
  NumDesignators = NumDesignators - 1 + NumNewDesignators;
}

DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
    SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
         OK_Ordinary, false, false, false, false) {
  BaseAndUpdaterExprs[0] = baseExpr;

  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
  ILE->setType(baseExpr->getType());
  BaseAndUpdaterExprs[1] = ILE;
}

SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
  return getBase()->getBeginLoc();
}

SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
  return getBase()->getEndLoc();
}

ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
                             SourceLocation RParenLoc)
    : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
           false, false),
      LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
  ParenListExprBits.NumExprs = Exprs.size();

  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
    if (Exprs[I]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (Exprs[I]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (Exprs[I]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (Exprs[I]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    getTrailingObjects<Stmt *>()[I] = Exprs[I];
  }
}

ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
    : Expr(ParenListExprClass, Empty) {
  ParenListExprBits.NumExprs = NumExprs;
}

ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
                                     SourceLocation LParenLoc,
                                     ArrayRef<Expr *> Exprs,
                                     SourceLocation RParenLoc) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
                           alignof(ParenListExpr));
  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
}

ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
                                          unsigned NumExprs) {
  void *Mem =
      Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
}

const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
    e = ewc->getSubExpr();
  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
    e = m->GetTemporaryExpr();
  e = cast<CXXConstructExpr>(e)->getArg(0);
  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
    e = ice->getSubExpr();
  return cast<OpaqueValueExpr>(e);
}

PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
                                           EmptyShell sh,
                                           unsigned numSemanticExprs) {
  void *buffer =
      Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
                       alignof(PseudoObjectExpr));
  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
}

PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
  : Expr(PseudoObjectExprClass, shell) {
  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
}

PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
                                           ArrayRef<Expr*> semantics,
                                           unsigned resultIndex) {
  assert(syntax && "no syntactic expression!");
  assert(semantics.size() && "no semantic expressions!");

  QualType type;
  ExprValueKind VK;
  if (resultIndex == NoResult) {
    type = C.VoidTy;
    VK = VK_RValue;
  } else {
    assert(resultIndex < semantics.size());
    type = semantics[resultIndex]->getType();
    VK = semantics[resultIndex]->getValueKind();
    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
  }

  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
                            alignof(PseudoObjectExpr));
  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
                                      resultIndex);
}

PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
                                   Expr *syntax, ArrayRef<Expr*> semantics,
                                   unsigned resultIndex)
  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
         /*filled in at end of ctor*/ false, false, false, false) {
  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
  PseudoObjectExprBits.ResultIndex = resultIndex + 1;

  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
    Expr *E = (i == 0 ? syntax : semantics[i-1]);
    getSubExprsBuffer()[i] = E;

    if (E->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (E->isValueDependent())
      ExprBits.ValueDependent = true;
    if (E->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (E->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    if (isa<OpaqueValueExpr>(E))
      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
             "opaque-value semantic expressions for pseudo-object "
             "operations must have sources");
  }
}

//===----------------------------------------------------------------------===//
//  Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//

// UnaryExprOrTypeTraitExpr
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
  const_child_range CCR =
      const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
}

Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
  // If this is of a type and the type is a VLA type (and not a typedef), the
  // size expression of the VLA needs to be treated as an executable expression.
  // Why isn't this weirdness documented better in StmtIterator?
  if (isArgumentType()) {
    if (const VariableArrayType *T =
            dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
      return const_child_range(const_child_iterator(T), const_child_iterator());
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
}

AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
                       QualType t, AtomicOp op, SourceLocation RP)
  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
         false, false, false, false),
    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
{
  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
  for (unsigned i = 0; i != args.size(); i++) {
    if (args[i]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (args[i]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (args[i]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (args[i]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    SubExprs[i] = args[i];
  }
}

unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
  switch (Op) {
  case AO__c11_atomic_init:
  case AO__opencl_atomic_init:
  case AO__c11_atomic_load:
  case AO__atomic_load_n:
    return 2;

  case AO__opencl_atomic_load:
  case AO__c11_atomic_store:
  case AO__c11_atomic_exchange:
  case AO__atomic_load:
  case AO__atomic_store:
  case AO__atomic_store_n:
  case AO__atomic_exchange_n:
  case AO__c11_atomic_fetch_add:
  case AO__c11_atomic_fetch_sub:
  case AO__c11_atomic_fetch_and:
  case AO__c11_atomic_fetch_or:
  case AO__c11_atomic_fetch_xor:
  case AO__atomic_fetch_add:
  case AO__atomic_fetch_sub:
  case AO__atomic_fetch_and:
  case AO__atomic_fetch_or:
  case AO__atomic_fetch_xor:
  case AO__atomic_fetch_nand:
  case AO__atomic_add_fetch:
  case AO__atomic_sub_fetch:
  case AO__atomic_and_fetch:
  case AO__atomic_or_fetch:
  case AO__atomic_xor_fetch:
  case AO__atomic_nand_fetch:
  case AO__atomic_fetch_min:
  case AO__atomic_fetch_max:
    return 3;

  case AO__opencl_atomic_store:
  case AO__opencl_atomic_exchange:
  case AO__opencl_atomic_fetch_add:
  case AO__opencl_atomic_fetch_sub:
  case AO__opencl_atomic_fetch_and:
  case AO__opencl_atomic_fetch_or:
  case AO__opencl_atomic_fetch_xor:
  case AO__opencl_atomic_fetch_min:
  case AO__opencl_atomic_fetch_max:
  case AO__atomic_exchange:
    return 4;

  case AO__c11_atomic_compare_exchange_strong:
  case AO__c11_atomic_compare_exchange_weak:
    return 5;

  case AO__opencl_atomic_compare_exchange_strong:
  case AO__opencl_atomic_compare_exchange_weak:
  case AO__atomic_compare_exchange:
  case AO__atomic_compare_exchange_n:
    return 6;
  }
  llvm_unreachable("unknown atomic op");
}

QualType AtomicExpr::getValueType() const {
  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
  if (auto AT = T->getAs<AtomicType>())
    return AT->getValueType();
  return T;
}

QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
  unsigned ArraySectionCount = 0;
  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
    Base = OASE->getBase();
    ++ArraySectionCount;
  }
  while (auto *ASE =
             dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
    Base = ASE->getBase();
    ++ArraySectionCount;
  }
  Base = Base->IgnoreParenImpCasts();
  auto OriginalTy = Base->getType();
  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
    if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
      OriginalTy = PVD->getOriginalType().getNonReferenceType();

  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
    if (OriginalTy->isAnyPointerType())
      OriginalTy = OriginalTy->getPointeeType();
    else {
      assert (OriginalTy->isArrayType());
      OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
    }
  }
  return OriginalTy;
}