reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines RangedConstraintManager, a class that provides a
//  range-based constraint manager interface.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"

namespace clang {

namespace ento {

RangedConstraintManager::~RangedConstraintManager() {}

ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
                                                   SymbolRef Sym,
                                                   bool Assumption) {
  // Handle SymbolData.
  if (isa<SymbolData>(Sym)) {
    return assumeSymUnsupported(State, Sym, Assumption);

    // Handle symbolic expression.
  } else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
    // We can only simplify expressions whose RHS is an integer.

    BinaryOperator::Opcode op = SIE->getOpcode();
    if (BinaryOperator::isComparisonOp(op) && op != BO_Cmp) {
      if (!Assumption)
        op = BinaryOperator::negateComparisonOp(op);

      return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
    }

  } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
    // Translate "a != b" to "(b - a) != 0".
    // We invert the order of the operands as a heuristic for how loop
    // conditions are usually written ("begin != end") as compared to length
    // calculations ("end - begin"). The more correct thing to do would be to
    // canonicalize "a - b" and "b - a", which would allow us to treat
    // "a != b" and "b != a" the same.
    SymbolManager &SymMgr = getSymbolManager();
    BinaryOperator::Opcode Op = SSE->getOpcode();
    assert(BinaryOperator::isComparisonOp(Op));

    // For now, we only support comparing pointers.
    if (Loc::isLocType(SSE->getLHS()->getType()) &&
        Loc::isLocType(SSE->getRHS()->getType())) {
      QualType DiffTy = SymMgr.getContext().getPointerDiffType();
      SymbolRef Subtraction =
          SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);

      const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
      Op = BinaryOperator::reverseComparisonOp(Op);
      if (!Assumption)
        Op = BinaryOperator::negateComparisonOp(Op);
      return assumeSymRel(State, Subtraction, Op, Zero);
    }
  }

  // If we get here, there's nothing else we can do but treat the symbol as
  // opaque.
  return assumeSymUnsupported(State, Sym, Assumption);
}

ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
    const llvm::APSInt &To, bool InRange) {
  // Get the type used for calculating wraparound.
  BasicValueFactory &BVF = getBasicVals();
  APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());

  llvm::APSInt Adjustment = WraparoundType.getZeroValue();
  SymbolRef AdjustedSym = Sym;
  computeAdjustment(AdjustedSym, Adjustment);

  // Convert the right-hand side integer as necessary.
  APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
  llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
  llvm::APSInt ConvertedTo = ComparisonType.convert(To);

  // Prefer unsigned comparisons.
  if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
      ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
    Adjustment.setIsSigned(false);

  if (InRange)
    return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
                                         ConvertedTo, Adjustment);
  return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
                                        ConvertedTo, Adjustment);
}

ProgramStateRef
RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
                                              SymbolRef Sym, bool Assumption) {
  BasicValueFactory &BVF = getBasicVals();
  QualType T = Sym->getType();

  // Non-integer types are not supported.
  if (!T->isIntegralOrEnumerationType())
    return State;

  // Reverse the operation and add directly to state.
  const llvm::APSInt &Zero = BVF.getValue(0, T);
  if (Assumption)
    return assumeSymNE(State, Sym, Zero, Zero);
  else
    return assumeSymEQ(State, Sym, Zero, Zero);
}

ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
                                                      SymbolRef Sym,
                                                      BinaryOperator::Opcode Op,
                                                      const llvm::APSInt &Int) {
  assert(BinaryOperator::isComparisonOp(Op) &&
         "Non-comparison ops should be rewritten as comparisons to zero.");

  // Simplification: translate an assume of a constraint of the form
  // "(exp comparison_op expr) != 0" to true into an assume of
  // "exp comparison_op expr" to true. (And similarly, an assume of the form
  // "(exp comparison_op expr) == 0" to true into an assume of
  // "exp comparison_op expr" to false.)
  if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
    if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
      if (BinaryOperator::isComparisonOp(SE->getOpcode()))
        return assumeSym(State, Sym, (Op == BO_NE ? true : false));
  }

  // Get the type used for calculating wraparound.
  BasicValueFactory &BVF = getBasicVals();
  APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());

  // We only handle simple comparisons of the form "$sym == constant"
  // or "($sym+constant1) == constant2".
  // The adjustment is "constant1" in the above expression. It's used to
  // "slide" the solution range around for modular arithmetic. For example,
  // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
  // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
  // the subclasses of SimpleConstraintManager to handle the adjustment.
  llvm::APSInt Adjustment = WraparoundType.getZeroValue();
  computeAdjustment(Sym, Adjustment);

  // Convert the right-hand side integer as necessary.
  APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
  llvm::APSInt ConvertedInt = ComparisonType.convert(Int);

  // Prefer unsigned comparisons.
  if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
      ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
    Adjustment.setIsSigned(false);

  switch (Op) {
  default:
    llvm_unreachable("invalid operation not caught by assertion above");

  case BO_EQ:
    return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);

  case BO_NE:
    return assumeSymNE(State, Sym, ConvertedInt, Adjustment);

  case BO_GT:
    return assumeSymGT(State, Sym, ConvertedInt, Adjustment);

  case BO_GE:
    return assumeSymGE(State, Sym, ConvertedInt, Adjustment);

  case BO_LT:
    return assumeSymLT(State, Sym, ConvertedInt, Adjustment);

  case BO_LE:
    return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
  } // end switch
}

void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
                                                llvm::APSInt &Adjustment) {
  // Is it a "($sym+constant1)" expression?
  if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
    BinaryOperator::Opcode Op = SE->getOpcode();
    if (Op == BO_Add || Op == BO_Sub) {
      Sym = SE->getLHS();
      Adjustment = APSIntType(Adjustment).convert(SE->getRHS());

      // Don't forget to negate the adjustment if it's being subtracted.
      // This should happen /after/ promotion, in case the value being
      // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
      if (Op == BO_Sub)
        Adjustment = -Adjustment;
    }
  }
}

void *ProgramStateTrait<ConstraintRange>::GDMIndex() {
  static int Index;
  return &Index;
}

} // end of namespace ento

} // end of namespace clang