reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
//===- Symbols.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLD_COFF_SYMBOLS_H
#define LLD_COFF_SYMBOLS_H

#include "Chunks.h"
#include "Config.h"
#include "lld/Common/LLVM.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/COFF.h"
#include <atomic>
#include <memory>
#include <vector>

namespace lld {

std::string toString(coff::Symbol &b);

// There are two different ways to convert an Archive::Symbol to a string:
// One for Microsoft name mangling and one for Itanium name mangling.
// Call the functions toCOFFString and toELFString, not just toString.
std::string toCOFFString(const coff::Archive::Symbol &b);

namespace coff {

using llvm::object::Archive;
using llvm::object::COFFSymbolRef;
using llvm::object::coff_import_header;
using llvm::object::coff_symbol_generic;

class ArchiveFile;
class InputFile;
class ObjFile;
class SymbolTable;

// The base class for real symbol classes.
class Symbol {
public:
  enum Kind {
    // The order of these is significant. We start with the regular defined
    // symbols as those are the most prevalent and the zero tag is the cheapest
    // to set. Among the defined kinds, the lower the kind is preferred over
    // the higher kind when testing whether one symbol should take precedence
    // over another.
    DefinedRegularKind = 0,
    DefinedCommonKind,
    DefinedLocalImportKind,
    DefinedImportThunkKind,
    DefinedImportDataKind,
    DefinedAbsoluteKind,
    DefinedSyntheticKind,

    UndefinedKind,
    LazyArchiveKind,
    LazyObjectKind,

    LastDefinedCOFFKind = DefinedCommonKind,
    LastDefinedKind = DefinedSyntheticKind,
  };

  Kind kind() const { return static_cast<Kind>(symbolKind); }

  // Returns the symbol name.
  StringRef getName();

  void replaceKeepingName(Symbol *other, size_t size);

  // Returns the file from which this symbol was created.
  InputFile *getFile();

  // Indicates that this symbol will be included in the final image. Only valid
  // after calling markLive.
  bool isLive() const;

  bool isLazy() const {
    return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
  }

protected:
  friend SymbolTable;
  explicit Symbol(Kind k, StringRef n = "")
      : symbolKind(k), isExternal(true), isCOMDAT(false),
        writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false),
        isRuntimePseudoReloc(false), nameSize(n.size()),
        nameData(n.empty() ? nullptr : n.data()) {}

  const unsigned symbolKind : 8;
  unsigned isExternal : 1;

public:
  // This bit is used by the \c DefinedRegular subclass.
  unsigned isCOMDAT : 1;

  // This bit is used by Writer::createSymbolAndStringTable() to prevent
  // symbols from being written to the symbol table more than once.
  unsigned writtenToSymtab : 1;

  // True if this symbol was referenced by a regular (non-bitcode) object.
  unsigned isUsedInRegularObj : 1;

  // True if we've seen both a lazy and an undefined symbol with this symbol
  // name, which means that we have enqueued an archive member load and should
  // not load any more archive members to resolve the same symbol.
  unsigned pendingArchiveLoad : 1;

  /// True if we've already added this symbol to the list of GC roots.
  unsigned isGCRoot : 1;

  unsigned isRuntimePseudoReloc : 1;

protected:
  // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
  uint32_t nameSize;

  const char *nameData;
};

// The base class for any defined symbols, including absolute symbols,
// etc.
class Defined : public Symbol {
public:
  Defined(Kind k, StringRef n) : Symbol(k, n) {}

  static bool classof(const Symbol *s) { return s->kind() <= LastDefinedKind; }

  // Returns the RVA (relative virtual address) of this symbol. The
  // writer sets and uses RVAs.
  uint64_t getRVA();

  // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
  // do not have chunks, so this may return null.
  Chunk *getChunk();
};

// Symbols defined via a COFF object file or bitcode file.  For COFF files, this
// stores a coff_symbol_generic*, and names of internal symbols are lazily
// loaded through that. For bitcode files, Sym is nullptr and the name is stored
// as a decomposed StringRef.
class DefinedCOFF : public Defined {
  friend Symbol;

public:
  DefinedCOFF(Kind k, InputFile *f, StringRef n, const coff_symbol_generic *s)
      : Defined(k, n), file(f), sym(s) {}

  static bool classof(const Symbol *s) {
    return s->kind() <= LastDefinedCOFFKind;
  }

  InputFile *getFile() { return file; }

  COFFSymbolRef getCOFFSymbol();

  InputFile *file;

protected:
  const coff_symbol_generic *sym;
};

// Regular defined symbols read from object file symbol tables.
class DefinedRegular : public DefinedCOFF {
public:
  DefinedRegular(InputFile *f, StringRef n, bool isCOMDAT,
                 bool isExternal = false,
                 const coff_symbol_generic *s = nullptr,
                 SectionChunk *c = nullptr)
      : DefinedCOFF(DefinedRegularKind, f, n, s), data(c ? &c->repl : nullptr) {
    this->isExternal = isExternal;
    this->isCOMDAT = isCOMDAT;
  }

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedRegularKind;
  }

  uint64_t getRVA() const { return (*data)->getRVA() + sym->Value; }
  SectionChunk *getChunk() const { return *data; }
  uint32_t getValue() const { return sym->Value; }

  SectionChunk **data;
};

class DefinedCommon : public DefinedCOFF {
public:
  DefinedCommon(InputFile *f, StringRef n, uint64_t size,
                const coff_symbol_generic *s = nullptr,
                CommonChunk *c = nullptr)
      : DefinedCOFF(DefinedCommonKind, f, n, s), data(c), size(size) {
    this->isExternal = true;
  }

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedCommonKind;
  }

  uint64_t getRVA() { return data->getRVA(); }
  CommonChunk *getChunk() { return data; }

private:
  friend SymbolTable;
  uint64_t getSize() const { return size; }
  CommonChunk *data;
  uint64_t size;
};

// Absolute symbols.
class DefinedAbsolute : public Defined {
public:
  DefinedAbsolute(StringRef n, COFFSymbolRef s)
      : Defined(DefinedAbsoluteKind, n), va(s.getValue()) {
    isExternal = s.isExternal();
  }

  DefinedAbsolute(StringRef n, uint64_t v)
      : Defined(DefinedAbsoluteKind, n), va(v) {}

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedAbsoluteKind;
  }

  uint64_t getRVA() { return va - config->imageBase; }
  void setVA(uint64_t v) { va = v; }

  // Section index relocations against absolute symbols resolve to
  // this 16 bit number, and it is the largest valid section index
  // plus one. This variable keeps it.
  static uint16_t numOutputSections;

private:
  uint64_t va;
};

// This symbol is used for linker-synthesized symbols like __ImageBase and
// __safe_se_handler_table.
class DefinedSynthetic : public Defined {
public:
  explicit DefinedSynthetic(StringRef name, Chunk *c)
      : Defined(DefinedSyntheticKind, name), c(c) {}

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedSyntheticKind;
  }

  // A null chunk indicates that this is __ImageBase. Otherwise, this is some
  // other synthesized chunk, like SEHTableChunk.
  uint32_t getRVA() { return c ? c->getRVA() : 0; }
  Chunk *getChunk() { return c; }

private:
  Chunk *c;
};

// This class represents a symbol defined in an archive file. It is
// created from an archive file header, and it knows how to load an
// object file from an archive to replace itself with a defined
// symbol. If the resolver finds both Undefined and LazyArchive for
// the same name, it will ask the LazyArchive to load a file.
class LazyArchive : public Symbol {
public:
  LazyArchive(ArchiveFile *f, const Archive::Symbol s)
      : Symbol(LazyArchiveKind, s.getName()), file(f), sym(s) {}

  static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }

  MemoryBufferRef getMemberBuffer();

  ArchiveFile *file;
  const Archive::Symbol sym;
};

class LazyObject : public Symbol {
public:
  LazyObject(LazyObjFile *f, StringRef n)
      : Symbol(LazyObjectKind, n), file(f) {}
  static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
  LazyObjFile *file;
};

// Undefined symbols.
class Undefined : public Symbol {
public:
  explicit Undefined(StringRef n) : Symbol(UndefinedKind, n) {}

  static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }

  // An undefined symbol can have a fallback symbol which gives an
  // undefined symbol a second chance if it would remain undefined.
  // If it remains undefined, it'll be replaced with whatever the
  // Alias pointer points to.
  Symbol *weakAlias = nullptr;

  // If this symbol is external weak, try to resolve it to a defined
  // symbol by searching the chain of fallback symbols. Returns the symbol if
  // successful, otherwise returns null.
  Defined *getWeakAlias();
};

// Windows-specific classes.

// This class represents a symbol imported from a DLL. This has two
// names for internal use and external use. The former is used for
// name resolution, and the latter is used for the import descriptor
// table in an output. The former has "__imp_" prefix.
class DefinedImportData : public Defined {
public:
  DefinedImportData(StringRef n, ImportFile *f)
      : Defined(DefinedImportDataKind, n), file(f) {
  }

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedImportDataKind;
  }

  uint64_t getRVA() { return file->location->getRVA(); }
  Chunk *getChunk() { return file->location; }
  void setLocation(Chunk *addressTable) { file->location = addressTable; }

  StringRef getDLLName() { return file->dllName; }
  StringRef getExternalName() { return file->externalName; }
  uint16_t getOrdinal() { return file->hdr->OrdinalHint; }

  ImportFile *file;
};

// This class represents a symbol for a jump table entry which jumps
// to a function in a DLL. Linker are supposed to create such symbols
// without "__imp_" prefix for all function symbols exported from
// DLLs, so that you can call DLL functions as regular functions with
// a regular name. A function pointer is given as a DefinedImportData.
class DefinedImportThunk : public Defined {
public:
  DefinedImportThunk(StringRef name, DefinedImportData *s, uint16_t machine);

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedImportThunkKind;
  }

  uint64_t getRVA() { return data->getRVA(); }
  Chunk *getChunk() { return data; }

  DefinedImportData *wrappedSym;

private:
  Chunk *data;
};

// If you have a symbol "foo" in your object file, a symbol name
// "__imp_foo" becomes automatically available as a pointer to "foo".
// This class is for such automatically-created symbols.
// Yes, this is an odd feature. We didn't intend to implement that.
// This is here just for compatibility with MSVC.
class DefinedLocalImport : public Defined {
public:
  DefinedLocalImport(StringRef n, Defined *s)
      : Defined(DefinedLocalImportKind, n), data(make<LocalImportChunk>(s)) {}

  static bool classof(const Symbol *s) {
    return s->kind() == DefinedLocalImportKind;
  }

  uint64_t getRVA() { return data->getRVA(); }
  Chunk *getChunk() { return data; }

private:
  LocalImportChunk *data;
};

inline uint64_t Defined::getRVA() {
  switch (kind()) {
  case DefinedAbsoluteKind:
    return cast<DefinedAbsolute>(this)->getRVA();
  case DefinedSyntheticKind:
    return cast<DefinedSynthetic>(this)->getRVA();
  case DefinedImportDataKind:
    return cast<DefinedImportData>(this)->getRVA();
  case DefinedImportThunkKind:
    return cast<DefinedImportThunk>(this)->getRVA();
  case DefinedLocalImportKind:
    return cast<DefinedLocalImport>(this)->getRVA();
  case DefinedCommonKind:
    return cast<DefinedCommon>(this)->getRVA();
  case DefinedRegularKind:
    return cast<DefinedRegular>(this)->getRVA();
  case LazyArchiveKind:
  case LazyObjectKind:
  case UndefinedKind:
    llvm_unreachable("Cannot get the address for an undefined symbol.");
  }
  llvm_unreachable("unknown symbol kind");
}

inline Chunk *Defined::getChunk() {
  switch (kind()) {
  case DefinedRegularKind:
    return cast<DefinedRegular>(this)->getChunk();
  case DefinedAbsoluteKind:
    return nullptr;
  case DefinedSyntheticKind:
    return cast<DefinedSynthetic>(this)->getChunk();
  case DefinedImportDataKind:
    return cast<DefinedImportData>(this)->getChunk();
  case DefinedImportThunkKind:
    return cast<DefinedImportThunk>(this)->getChunk();
  case DefinedLocalImportKind:
    return cast<DefinedLocalImport>(this)->getChunk();
  case DefinedCommonKind:
    return cast<DefinedCommon>(this)->getChunk();
  case LazyArchiveKind:
  case LazyObjectKind:
  case UndefinedKind:
    llvm_unreachable("Cannot get the chunk of an undefined symbol.");
  }
  llvm_unreachable("unknown symbol kind");
}

// A buffer class that is large enough to hold any Symbol-derived
// object. We allocate memory using this class and instantiate a symbol
// using the placement new.
union SymbolUnion {
  alignas(DefinedRegular) char a[sizeof(DefinedRegular)];
  alignas(DefinedCommon) char b[sizeof(DefinedCommon)];
  alignas(DefinedAbsolute) char c[sizeof(DefinedAbsolute)];
  alignas(DefinedSynthetic) char d[sizeof(DefinedSynthetic)];
  alignas(LazyArchive) char e[sizeof(LazyArchive)];
  alignas(Undefined) char f[sizeof(Undefined)];
  alignas(DefinedImportData) char g[sizeof(DefinedImportData)];
  alignas(DefinedImportThunk) char h[sizeof(DefinedImportThunk)];
  alignas(DefinedLocalImport) char i[sizeof(DefinedLocalImport)];
  alignas(LazyObject) char j[sizeof(LazyObject)];
};

template <typename T, typename... ArgT>
void replaceSymbol(Symbol *s, ArgT &&... arg) {
  static_assert(std::is_trivially_destructible<T>(),
                "Symbol types must be trivially destructible");
  static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small");
  static_assert(alignof(T) <= alignof(SymbolUnion),
                "SymbolUnion not aligned enough");
  assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr &&
         "Not a Symbol");
  new (s) T(std::forward<ArgT>(arg)...);
}
} // namespace coff

} // namespace lld

#endif