reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
//===- Symbols.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various types of Symbols.
//
//===----------------------------------------------------------------------===//

#ifndef LLD_ELF_SYMBOLS_H
#define LLD_ELF_SYMBOLS_H

#include "InputFiles.h"
#include "InputSection.h"
#include "lld/Common/LLVM.h"
#include "lld/Common/Strings.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ELF.h"

namespace lld {
std::string toString(const elf::Symbol &);

// There are two different ways to convert an Archive::Symbol to a string:
// One for Microsoft name mangling and one for Itanium name mangling.
// Call the functions toCOFFString and toELFString, not just toString.
std::string toELFString(const llvm::object::Archive::Symbol &);

namespace elf {
class CommonSymbol;
class Defined;
class InputFile;
class LazyArchive;
class LazyObject;
class SharedSymbol;
class Symbol;
class Undefined;

// This is a StringRef-like container that doesn't run strlen().
//
// ELF string tables contain a lot of null-terminated strings. Most of them
// are not necessary for the linker because they are names of local symbols,
// and the linker doesn't use local symbol names for name resolution. So, we
// use this class to represents strings read from string tables.
struct StringRefZ {
  StringRefZ(const char *s) : data(s), size(-1) {}
  StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}

  const char *data;
  const uint32_t size;
};

// The base class for real symbol classes.
class Symbol {
public:
  enum Kind {
    PlaceholderKind,
    DefinedKind,
    CommonKind,
    SharedKind,
    UndefinedKind,
    LazyArchiveKind,
    LazyObjectKind,
  };

  Kind kind() const { return static_cast<Kind>(symbolKind); }

  // The file from which this symbol was created.
  InputFile *file;

protected:
  const char *nameData;
  mutable uint32_t nameSize;

public:
  uint32_t dynsymIndex = 0;
  uint32_t gotIndex = -1;
  uint32_t pltIndex = -1;

  uint32_t globalDynIndex = -1;

  // This field is a index to the symbol's version definition.
  uint32_t verdefIndex = -1;

  // Version definition index.
  uint16_t versionId;

  // An index into the .branch_lt section on PPC64.
  uint16_t ppc64BranchltIndex = -1;

  // Symbol binding. This is not overwritten by replace() to track
  // changes during resolution. In particular:
  //  - An undefined weak is still weak when it resolves to a shared library.
  //  - An undefined weak will not fetch archive members, but we have to
  //    remember it is weak.
  uint8_t binding;

  // The following fields have the same meaning as the ELF symbol attributes.
  uint8_t type;    // symbol type
  uint8_t stOther; // st_other field value

  uint8_t symbolKind;

  // Symbol visibility. This is the computed minimum visibility of all
  // observed non-DSO symbols.
  unsigned visibility : 2;

  // True if the symbol was used for linking and thus need to be added to the
  // output file's symbol table. This is true for all symbols except for
  // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
  // are unreferenced except by other bitcode objects.
  unsigned isUsedInRegularObj : 1;

  // Used by a Defined symbol with protected or default visibility, to record
  // whether it is required to be exported into .dynsym. This is set when any of
  // the following conditions hold:
  //
  // - If there is an interposable symbol from a DSO.
  // - If -shared or --export-dynamic is specified, any symbol in an object
  //   file/bitcode sets this property, unless suppressed by LTO
  //   canBeOmittedFromSymbolTable().
  unsigned exportDynamic : 1;

  // True if the symbol is in the --dynamic-list file. A Defined symbol with
  // protected or default visibility with this property is required to be
  // exported into .dynsym.
  unsigned inDynamicList : 1;

  // False if LTO shouldn't inline whatever this symbol points to. If a symbol
  // is overwritten after LTO, LTO shouldn't inline the symbol because it
  // doesn't know the final contents of the symbol.
  unsigned canInline : 1;

  // Used by Undefined and SharedSymbol to track if there has been at least one
  // undefined reference to the symbol. The binding may change to STB_WEAK if
  // the first undefined reference from a non-shared object is weak.
  unsigned referenced : 1;

  // True if this symbol is specified by --trace-symbol option.
  unsigned traced : 1;

  inline void replace(const Symbol &newSym);

  bool includeInDynsym() const;
  uint8_t computeBinding() const;
  bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }

  bool isUndefined() const { return symbolKind == UndefinedKind; }
  bool isCommon() const { return symbolKind == CommonKind; }
  bool isDefined() const { return symbolKind == DefinedKind; }
  bool isShared() const { return symbolKind == SharedKind; }
  bool isPlaceholder() const { return symbolKind == PlaceholderKind; }

  bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }

  bool isLazy() const {
    return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
  }

  // True if this is an undefined weak symbol. This only works once
  // all input files have been added.
  bool isUndefWeak() const {
    // See comment on lazy symbols for details.
    return isWeak() && (isUndefined() || isLazy());
  }

  StringRef getName() const {
    if (nameSize == (uint32_t)-1)
      nameSize = strlen(nameData);
    return {nameData, nameSize};
  }

  void setName(StringRef s) {
    nameData = s.data();
    nameSize = s.size();
  }

  void parseSymbolVersion();

  bool isInGot() const { return gotIndex != -1U; }
  bool isInPlt() const { return pltIndex != -1U; }
  bool isInPPC64Branchlt() const { return ppc64BranchltIndex != 0xffff; }

  uint64_t getVA(int64_t addend = 0) const;

  uint64_t getGotOffset() const;
  uint64_t getGotVA() const;
  uint64_t getGotPltOffset() const;
  uint64_t getGotPltVA() const;
  uint64_t getPltVA() const;
  uint64_t getPPC64LongBranchTableVA() const;
  uint64_t getPPC64LongBranchOffset() const;
  uint64_t getSize() const;
  OutputSection *getOutputSection() const;

  // The following two functions are used for symbol resolution.
  //
  // You are expected to call mergeProperties for all symbols in input
  // files so that attributes that are attached to names rather than
  // indivisual symbol (such as visibility) are merged together.
  //
  // Every time you read a new symbol from an input, you are supposed
  // to call resolve() with the new symbol. That function replaces
  // "this" object as a result of name resolution if the new symbol is
  // more appropriate to be included in the output.
  //
  // For example, if "this" is an undefined symbol and a new symbol is
  // a defined symbol, "this" is replaced with the new symbol.
  void mergeProperties(const Symbol &other);
  void resolve(const Symbol &other);

  // If this is a lazy symbol, fetch an input file and add the symbol
  // in the file to the symbol table. Calling this function on
  // non-lazy object causes a runtime error.
  void fetch() const;

private:
  static bool isExportDynamic(Kind k, uint8_t visibility) {
    if (k == SharedKind)
      return visibility == llvm::ELF::STV_DEFAULT;
    return config->shared || config->exportDynamic;
  }

  void resolveUndefined(const Undefined &other);
  void resolveCommon(const CommonSymbol &other);
  void resolveDefined(const Defined &other);
  template <class LazyT> void resolveLazy(const LazyT &other);
  void resolveShared(const SharedSymbol &other);

  int compare(const Symbol *other) const;

  inline size_t getSymbolSize() const;

protected:
  Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
         uint8_t stOther, uint8_t type)
      : file(file), nameData(name.data), nameSize(name.size), binding(binding),
        type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
        isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
        exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
        canInline(false), referenced(false), traced(false), needsPltAddr(false),
        isInIplt(false), gotInIgot(false), isPreemptible(false),
        used(!config->gcSections), needsTocRestore(false),
        scriptDefined(false) {}

public:
  // True the symbol should point to its PLT entry.
  // For SharedSymbol only.
  unsigned needsPltAddr : 1;

  // True if this symbol is in the Iplt sub-section of the Plt and the Igot
  // sub-section of the .got.plt or .got.
  unsigned isInIplt : 1;

  // True if this symbol needs a GOT entry and its GOT entry is actually in
  // Igot. This will be true only for certain non-preemptible ifuncs.
  unsigned gotInIgot : 1;

  // True if this symbol is preemptible at load time.
  unsigned isPreemptible : 1;

  // True if an undefined or shared symbol is used from a live section.
  unsigned used : 1;

  // True if a call to this symbol needs to be followed by a restore of the
  // PPC64 toc pointer.
  unsigned needsTocRestore : 1;

  // True if this symbol is defined by a linker script.
  unsigned scriptDefined : 1;

  // The partition whose dynamic symbol table contains this symbol's definition.
  uint8_t partition = 1;

  bool isSection() const { return type == llvm::ELF::STT_SECTION; }
  bool isTls() const { return type == llvm::ELF::STT_TLS; }
  bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
  bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
  bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
  bool isFile() const { return type == llvm::ELF::STT_FILE; }
};

// Represents a symbol that is defined in the current output file.
class Defined : public Symbol {
public:
  Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
          uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
      : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
        size(size), section(section) {}

  static bool classof(const Symbol *s) { return s->isDefined(); }

  uint64_t value;
  uint64_t size;
  SectionBase *section;
};

// Represents a common symbol.
//
// On Unix, it is traditionally allowed to write variable definitions
// without initialization expressions (such as "int foo;") to header
// files. Such definition is called "tentative definition".
//
// Using tentative definition is usually considered a bad practice
// because you should write only declarations (such as "extern int
// foo;") to header files. Nevertheless, the linker and the compiler
// have to do something to support bad code by allowing duplicate
// definitions for this particular case.
//
// Common symbols represent variable definitions without initializations.
// The compiler creates common symbols when it sees variable definitions
// without initialization (you can suppress this behavior and let the
// compiler create a regular defined symbol by -fno-common).
//
// The linker allows common symbols to be replaced by regular defined
// symbols. If there are remaining common symbols after name resolution is
// complete, they are converted to regular defined symbols in a .bss
// section. (Therefore, the later passes don't see any CommonSymbols.)
class CommonSymbol : public Symbol {
public:
  CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
               uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
      : Symbol(CommonKind, file, name, binding, stOther, type),
        alignment(alignment), size(size) {}

  static bool classof(const Symbol *s) { return s->isCommon(); }

  uint32_t alignment;
  uint64_t size;
};

class Undefined : public Symbol {
public:
  Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
            uint8_t type, uint32_t discardedSecIdx = 0)
      : Symbol(UndefinedKind, file, name, binding, stOther, type),
        discardedSecIdx(discardedSecIdx) {}

  static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }

  // The section index if in a discarded section, 0 otherwise.
  uint32_t discardedSecIdx;
};

class SharedSymbol : public Symbol {
public:
  static bool classof(const Symbol *s) { return s->kind() == SharedKind; }

  SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
               uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
               uint32_t alignment, uint32_t verdefIndex)
      : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
        size(size), alignment(alignment) {
    this->verdefIndex = verdefIndex;
    // GNU ifunc is a mechanism to allow user-supplied functions to
    // resolve PLT slot values at load-time. This is contrary to the
    // regular symbol resolution scheme in which symbols are resolved just
    // by name. Using this hook, you can program how symbols are solved
    // for you program. For example, you can make "memcpy" to be resolved
    // to a SSE-enabled version of memcpy only when a machine running the
    // program supports the SSE instruction set.
    //
    // Naturally, such symbols should always be called through their PLT
    // slots. What GNU ifunc symbols point to are resolver functions, and
    // calling them directly doesn't make sense (unless you are writing a
    // loader).
    //
    // For DSO symbols, we always call them through PLT slots anyway.
    // So there's no difference between GNU ifunc and regular function
    // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
    if (this->type == llvm::ELF::STT_GNU_IFUNC)
      this->type = llvm::ELF::STT_FUNC;
  }

  SharedFile &getFile() const { return *cast<SharedFile>(file); }

  uint64_t value; // st_value
  uint64_t size;  // st_size
  uint32_t alignment;
};

// LazyArchive and LazyObject represent a symbols that is not yet in the link,
// but we know where to find it if needed. If the resolver finds both Undefined
// and Lazy for the same name, it will ask the Lazy to load a file.
//
// A special complication is the handling of weak undefined symbols. They should
// not load a file, but we have to remember we have seen both the weak undefined
// and the lazy. We represent that with a lazy symbol with a weak binding. This
// means that code looking for undefined symbols normally also has to take lazy
// symbols into consideration.

// This class represents a symbol defined in an archive file. It is
// created from an archive file header, and it knows how to load an
// object file from an archive to replace itself with a defined
// symbol.
class LazyArchive : public Symbol {
public:
  LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
      : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
        sym(s) {}

  static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }

  MemoryBufferRef getMemberBuffer();

  const llvm::object::Archive::Symbol sym;
};

// LazyObject symbols represents symbols in object files between
// --start-lib and --end-lib options.
class LazyObject : public Symbol {
public:
  LazyObject(InputFile &file, StringRef name)
      : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}

  static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
};

// Some linker-generated symbols need to be created as
// Defined symbols.
struct ElfSym {
  // __bss_start
  static Defined *bss;

  // etext and _etext
  static Defined *etext1;
  static Defined *etext2;

  // edata and _edata
  static Defined *edata1;
  static Defined *edata2;

  // end and _end
  static Defined *end1;
  static Defined *end2;

  // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
  // be at some offset from the base of the .got section, usually 0 or
  // the end of the .got.
  static Defined *globalOffsetTable;

  // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
  static Defined *mipsGp;
  static Defined *mipsGpDisp;
  static Defined *mipsLocalGp;

  // __rel{,a}_iplt_{start,end} symbols.
  static Defined *relaIpltStart;
  static Defined *relaIpltEnd;

  // __global_pointer$ for RISC-V.
  static Defined *riscvGlobalPointer;

  // _TLS_MODULE_BASE_ on targets that support TLSDESC.
  static Defined *tlsModuleBase;
};

// A buffer class that is large enough to hold any Symbol-derived
// object. We allocate memory using this class and instantiate a symbol
// using the placement new.
union SymbolUnion {
  alignas(Defined) char a[sizeof(Defined)];
  alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
  alignas(Undefined) char c[sizeof(Undefined)];
  alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
  alignas(LazyArchive) char e[sizeof(LazyArchive)];
  alignas(LazyObject) char f[sizeof(LazyObject)];
};

// It is important to keep the size of SymbolUnion small for performance and
// memory usage reasons. 80 bytes is a soft limit based on the size of Defined
// on a 64-bit system.
static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");

template <typename T> struct AssertSymbol {
  static_assert(std::is_trivially_destructible<T>(),
                "Symbol types must be trivially destructible");
  static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
  static_assert(alignof(T) <= alignof(SymbolUnion),
                "SymbolUnion not aligned enough");
};

static inline void assertSymbols() {
  AssertSymbol<Defined>();
  AssertSymbol<CommonSymbol>();
  AssertSymbol<Undefined>();
  AssertSymbol<SharedSymbol>();
  AssertSymbol<LazyArchive>();
  AssertSymbol<LazyObject>();
}

void printTraceSymbol(const Symbol *sym);

size_t Symbol::getSymbolSize() const {
  switch (kind()) {
  case CommonKind:
    return sizeof(CommonSymbol);
  case DefinedKind:
    return sizeof(Defined);
  case LazyArchiveKind:
    return sizeof(LazyArchive);
  case LazyObjectKind:
    return sizeof(LazyObject);
  case SharedKind:
    return sizeof(SharedSymbol);
  case UndefinedKind:
    return sizeof(Undefined);
  case PlaceholderKind:
    return sizeof(Symbol);
  }
  llvm_unreachable("unknown symbol kind");
}

// replace() replaces "this" object with a given symbol by memcpy'ing
// it over to "this". This function is called as a result of name
// resolution, e.g. to replace an undefind symbol with a defined symbol.
void Symbol::replace(const Symbol &newSym) {
  using llvm::ELF::STT_TLS;

  // Symbols representing thread-local variables must be referenced by
  // TLS-aware relocations, and non-TLS symbols must be reference by
  // non-TLS relocations, so there's a clear distinction between TLS
  // and non-TLS symbols. It is an error if the same symbol is defined
  // as a TLS symbol in one file and as a non-TLS symbol in other file.
  if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() &&
      (type == STT_TLS) != (newSym.type == STT_TLS))
    error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
          toString(newSym.file) + "\n>>> defined in " + toString(file));

  Symbol old = *this;
  memcpy(this, &newSym, newSym.getSymbolSize());

  // old may be a placeholder. The referenced fields must be initialized in
  // SymbolTable::insert.
  versionId = old.versionId;
  visibility = old.visibility;
  isUsedInRegularObj = old.isUsedInRegularObj;
  exportDynamic = old.exportDynamic;
  inDynamicList = old.inDynamicList;
  canInline = old.canInline;
  referenced = old.referenced;
  traced = old.traced;
  isPreemptible = old.isPreemptible;
  scriptDefined = old.scriptDefined;
  partition = old.partition;

  // Symbol length is computed lazily. If we already know a symbol length,
  // propagate it.
  if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
    nameSize = old.nameSize;

  // Print out a log message if --trace-symbol was specified.
  // This is for debugging.
  if (traced)
    printTraceSymbol(this);
}

void maybeWarnUnorderableSymbol(const Symbol *sym);
} // namespace elf
} // namespace lld

#endif