reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Assembler.h"

#include "SnippetRepetitor.h"
#include "Target.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/MemoryBuffer.h"

namespace llvm {
namespace exegesis {

static constexpr const char ModuleID[] = "ExegesisInfoTest";
static constexpr const char FunctionID[] = "foo";
static const Align kFunctionAlignment(4096);

// Fills the given basic block with register setup code, and returns true if
// all registers could be setup correctly.
static bool generateSnippetSetupCode(
    const ExegesisTarget &ET, const MCSubtargetInfo *const MSI,
    ArrayRef<RegisterValue> RegisterInitialValues, BasicBlockFiller &BBF) {
  bool IsSnippetSetupComplete = true;
  for (const RegisterValue &RV : RegisterInitialValues) {
    // Load a constant in the register.
    const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
    if (SetRegisterCode.empty())
      IsSnippetSetupComplete = false;
    BBF.addInstructions(SetRegisterCode);
  }
  return IsSnippetSetupComplete;
}

// Small utility function to add named passes.
static bool addPass(PassManagerBase &PM, StringRef PassName,
                    TargetPassConfig &TPC) {
  const PassRegistry *PR = PassRegistry::getPassRegistry();
  const PassInfo *PI = PR->getPassInfo(PassName);
  if (!PI) {
    errs() << " run-pass " << PassName << " is not registered.\n";
    return true;
  }

  if (!PI->getNormalCtor()) {
    errs() << " cannot create pass: " << PI->getPassName() << "\n";
    return true;
  }
  Pass *P = PI->getNormalCtor()();
  std::string Banner = std::string("After ") + std::string(P->getPassName());
  PM.add(P);
  TPC.printAndVerify(Banner);

  return false;
}

MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionID,
                                                  Module *Module,
                                                  MachineModuleInfo *MMI) {
  Type *const ReturnType = Type::getInt32Ty(Module->getContext());
  Type *const MemParamType = PointerType::get(
      Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
  FunctionType *FunctionType =
      FunctionType::get(ReturnType, {MemParamType}, false);
  Function *const F = Function::Create(
      FunctionType, GlobalValue::InternalLinkage, FunctionID, Module);
  // Making sure we can create a MachineFunction out of this Function even if it
  // contains no IR.
  F->setIsMaterializable(true);
  return MMI->getOrCreateMachineFunction(*F);
}

BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
                                   const MCInstrInfo *MCII)
    : MF(MF), MBB(MBB), MCII(MCII) {}

void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
  const unsigned Opcode = Inst.getOpcode();
  const MCInstrDesc &MCID = MCII->get(Opcode);
  MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
  for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
       ++OpIndex) {
    const MCOperand &Op = Inst.getOperand(OpIndex);
    if (Op.isReg()) {
      const bool IsDef = OpIndex < MCID.getNumDefs();
      unsigned Flags = 0;
      const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
      if (IsDef && !OpInfo.isOptionalDef())
        Flags |= RegState::Define;
      Builder.addReg(Op.getReg(), Flags);
    } else if (Op.isImm()) {
      Builder.addImm(Op.getImm());
    } else if (!Op.isValid()) {
      llvm_unreachable("Operand is not set");
    } else {
      llvm_unreachable("Not yet implemented");
    }
  }
}

void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
                                       const DebugLoc &DL) {
  for (const MCInst &Inst : Insts)
    addInstruction(Inst, DL);
}

void BasicBlockFiller::addReturn(const DebugLoc &DL) {
  // Insert the return code.
  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
    BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
  } else {
    MachineIRBuilder MIB(MF);
    MIB.setMBB(*MBB);
    MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {});
  }
}

FunctionFiller::FunctionFiller(MachineFunction &MF,
                               std::vector<unsigned> RegistersSetUp)
    : MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
      RegistersSetUp(std::move(RegistersSetUp)) {}

BasicBlockFiller FunctionFiller::addBasicBlock() {
  MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
  MF.push_back(MBB);
  return BasicBlockFiller(MF, MBB, MCII);
}

ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
  return RegistersSetUp;
}

static std::unique_ptr<Module>
createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout DL) {
  auto Mod = std::make_unique<Module>(ModuleID, *Context);
  Mod->setDataLayout(DL);
  return Mod;
}

BitVector getFunctionReservedRegs(const TargetMachine &TM) {
  std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
  std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
  // TODO: This only works for targets implementing LLVMTargetMachine.
  const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
  std::unique_ptr<MachineModuleInfoWrapperPass> MMIWP =
      std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
  MachineFunction &MF = createVoidVoidPtrMachineFunction(
      FunctionID, Module.get(), &MMIWP.get()->getMMI());
  // Saving reserved registers for client.
  return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
}

void assembleToStream(const ExegesisTarget &ET,
                      std::unique_ptr<LLVMTargetMachine> TM,
                      ArrayRef<unsigned> LiveIns,
                      ArrayRef<RegisterValue> RegisterInitialValues,
                      const FillFunction &Fill, raw_pwrite_stream &AsmStream) {
  auto Context = std::make_unique<LLVMContext>();
  std::unique_ptr<Module> Module =
      createModule(Context, TM->createDataLayout());
  auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
  MachineFunction &MF = createVoidVoidPtrMachineFunction(
      FunctionID, Module.get(), &MMIWP.get()->getMMI());
  MF.ensureAlignment(kFunctionAlignment);

  // We need to instruct the passes that we're done with SSA and virtual
  // registers.
  auto &Properties = MF.getProperties();
  Properties.set(MachineFunctionProperties::Property::NoVRegs);
  Properties.reset(MachineFunctionProperties::Property::IsSSA);
  Properties.set(MachineFunctionProperties::Property::NoPHIs);

  for (const unsigned Reg : LiveIns)
    MF.getRegInfo().addLiveIn(Reg);

  std::vector<unsigned> RegistersSetUp;
  for (const auto &InitValue : RegisterInitialValues) {
    RegistersSetUp.push_back(InitValue.Register);
  }
  FunctionFiller Sink(MF, std::move(RegistersSetUp));
  auto Entry = Sink.getEntry();
  for (const unsigned Reg : LiveIns)
    Entry.MBB->addLiveIn(Reg);

  const bool IsSnippetSetupComplete = generateSnippetSetupCode(
      ET, TM->getMCSubtargetInfo(), RegisterInitialValues, Entry);

  // If the snippet setup is not complete, we disable liveliness tracking. This
  // means that we won't know what values are in the registers.
  if (!IsSnippetSetupComplete)
    Properties.reset(MachineFunctionProperties::Property::TracksLiveness);

  Fill(Sink);

  // prologue/epilogue pass needs the reserved registers to be frozen, this
  // is usually done by the SelectionDAGISel pass.
  MF.getRegInfo().freezeReservedRegs(MF);

  // We create the pass manager, run the passes to populate AsmBuffer.
  MCContext &MCContext = MMIWP->getMMI().getContext();
  legacy::PassManager PM;

  TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
  PM.add(new TargetLibraryInfoWrapperPass(TLII));

  TargetPassConfig *TPC = TM->createPassConfig(PM);
  PM.add(TPC);
  PM.add(MMIWP.release());
  TPC->printAndVerify("MachineFunctionGenerator::assemble");
  // Add target-specific passes.
  ET.addTargetSpecificPasses(PM);
  TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
  // Adding the following passes:
  // - postrapseudos: expands pseudo return instructions used on some targets.
  // - machineverifier: checks that the MachineFunction is well formed.
  // - prologepilog: saves and restore callee saved registers.
  for (const char *PassName :
       {"postrapseudos", "machineverifier", "prologepilog"})
    if (addPass(PM, PassName, *TPC))
      report_fatal_error("Unable to add a mandatory pass");
  TPC->setInitialized();

  // AsmPrinter is responsible for generating the assembly into AsmBuffer.
  if (TM->addAsmPrinter(PM, AsmStream, nullptr, TargetMachine::CGFT_ObjectFile,
                        MCContext))
    report_fatal_error("Cannot add AsmPrinter passes");

  PM.run(*Module); // Run all the passes
}

object::OwningBinary<object::ObjectFile>
getObjectFromBuffer(StringRef InputData) {
  // Storing the generated assembly into a MemoryBuffer that owns the memory.
  std::unique_ptr<MemoryBuffer> Buffer =
      MemoryBuffer::getMemBufferCopy(InputData);
  // Create the ObjectFile from the MemoryBuffer.
  std::unique_ptr<object::ObjectFile> Obj =
      cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
  // Returning both the MemoryBuffer and the ObjectFile.
  return object::OwningBinary<object::ObjectFile>(std::move(Obj),
                                                  std::move(Buffer));
}

object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
  return cantFail(object::ObjectFile::createObjectFile(Filename));
}

namespace {

// Implementation of this class relies on the fact that a single object with a
// single function will be loaded into memory.
class TrackingSectionMemoryManager : public SectionMemoryManager {
public:
  explicit TrackingSectionMemoryManager(uintptr_t *CodeSize)
      : CodeSize(CodeSize) {}

  uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
                               unsigned SectionID,
                               StringRef SectionName) override {
    *CodeSize = Size;
    return SectionMemoryManager::allocateCodeSection(Size, Alignment, SectionID,
                                                     SectionName);
  }

private:
  uintptr_t *const CodeSize = nullptr;
};

} // namespace

ExecutableFunction::ExecutableFunction(
    std::unique_ptr<LLVMTargetMachine> TM,
    object::OwningBinary<object::ObjectFile> &&ObjectFileHolder)
    : Context(std::make_unique<LLVMContext>()) {
  assert(ObjectFileHolder.getBinary() && "cannot create object file");
  // Initializing the execution engine.
  // We need to use the JIT EngineKind to be able to add an object file.
  LLVMLinkInMCJIT();
  uintptr_t CodeSize = 0;
  std::string Error;
  ExecEngine.reset(
      EngineBuilder(createModule(Context, TM->createDataLayout()))
          .setErrorStr(&Error)
          .setMCPU(TM->getTargetCPU())
          .setEngineKind(EngineKind::JIT)
          .setMCJITMemoryManager(
              std::make_unique<TrackingSectionMemoryManager>(&CodeSize))
          .create(TM.release()));
  if (!ExecEngine)
    report_fatal_error(Error);
  // Adding the generated object file containing the assembled function.
  // The ExecutionEngine makes sure the object file is copied into an
  // executable page.
  ExecEngine->addObjectFile(std::move(ObjectFileHolder));
  // Fetching function bytes.
  const uint64_t FunctionAddress = ExecEngine->getFunctionAddress(FunctionID);
  assert(isAligned(kFunctionAlignment, FunctionAddress) &&
         "function is not properly aligned");
  FunctionBytes =
      StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
}

} // namespace exegesis
} // namespace llvm