reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
//===- xray-stacks.cpp: XRay Function Call Stack Accounting ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements stack-based accounting. It takes XRay traces, and
// collates statistics across these traces to show a breakdown of time spent
// at various points of the stack to provide insight into which functions
// spend the most time in terms of a call stack. We provide a few
// sorting/filtering options for zero'ing in on the useful stacks.
//
//===----------------------------------------------------------------------===//

#include <forward_list>
#include <numeric>

#include "func-id-helper.h"
#include "trie-node.h"
#include "xray-registry.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/XRay/Graph.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"

using namespace llvm;
using namespace llvm::xray;

static cl::SubCommand Stack("stack", "Call stack accounting");
static cl::list<std::string> StackInputs(cl::Positional,
                                         cl::desc("<xray trace>"), cl::Required,
                                         cl::sub(Stack), cl::OneOrMore);

static cl::opt<bool>
    StackKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
                   cl::sub(Stack), cl::init(false));
static cl::alias StackKeepGoing2("k", cl::aliasopt(StackKeepGoing),
                                 cl::desc("Alias for -keep-going"),
                                 cl::sub(Stack));

// TODO: Does there need to be an option to deduce tail or sibling calls?

static cl::opt<std::string> StacksInstrMap(
    "instr_map",
    cl::desc("instrumentation map used to identify function ids. "
             "Currently supports elf file instrumentation maps."),
    cl::sub(Stack), cl::init(""));
static cl::alias StacksInstrMap2("m", cl::aliasopt(StacksInstrMap),
                                 cl::desc("Alias for -instr_map"),
                                 cl::sub(Stack));

static cl::opt<bool>
    SeparateThreadStacks("per-thread-stacks",
                         cl::desc("Report top stacks within each thread id"),
                         cl::sub(Stack), cl::init(false));

static cl::opt<bool>
    AggregateThreads("aggregate-threads",
                     cl::desc("Aggregate stack times across threads"),
                     cl::sub(Stack), cl::init(false));

static cl::opt<bool>
    DumpAllStacks("all-stacks",
                  cl::desc("Dump sum of timings for all stacks. "
                           "By default separates stacks per-thread."),
                  cl::sub(Stack), cl::init(false));
static cl::alias DumpAllStacksShort("all", cl::aliasopt(DumpAllStacks),
                                    cl::desc("Alias for -all-stacks"),
                                    cl::sub(Stack));

// TODO(kpw): Add other interesting formats. Perhaps chrome trace viewer format
// possibly with aggregations or just a linear trace of timings.
enum StackOutputFormat { HUMAN, FLAMETOOL };

static cl::opt<StackOutputFormat> StacksOutputFormat(
    "stack-format",
    cl::desc("The format that output stacks should be "
             "output in. Only applies with all-stacks."),
    cl::values(
        clEnumValN(HUMAN, "human",
                   "Human readable output. Only valid without -all-stacks."),
        clEnumValN(FLAMETOOL, "flame",
                   "Format consumable by Brendan Gregg's FlameGraph tool. "
                   "Only valid with -all-stacks.")),
    cl::sub(Stack), cl::init(HUMAN));

// Types of values for each stack in a CallTrie.
enum class AggregationType {
  TOTAL_TIME,      // The total time spent in a stack and its callees.
  INVOCATION_COUNT // The number of times the stack was invoked.
};

static cl::opt<AggregationType> RequestedAggregation(
    "aggregation-type",
    cl::desc("The type of aggregation to do on call stacks."),
    cl::values(
        clEnumValN(
            AggregationType::TOTAL_TIME, "time",
            "Capture the total time spent in an all invocations of a stack."),
        clEnumValN(AggregationType::INVOCATION_COUNT, "count",
                   "Capture the number of times a stack was invoked. "
                   "In flamegraph mode, this count also includes invocations "
                   "of all callees.")),
    cl::sub(Stack), cl::init(AggregationType::TOTAL_TIME));

/// A helper struct to work with formatv and XRayRecords. Makes it easier to
/// use instrumentation map names or addresses in formatted output.
struct format_xray_record : public FormatAdapter<XRayRecord> {
  explicit format_xray_record(XRayRecord record,
                              const FuncIdConversionHelper &conv)
      : FormatAdapter<XRayRecord>(std::move(record)), Converter(&conv) {}
  void format(raw_ostream &Stream, StringRef Style) override {
    Stream << formatv(
        "{FuncId: \"{0}\", ThreadId: \"{1}\", RecordType: \"{2}\"}",
        Converter->SymbolOrNumber(Item.FuncId), Item.TId,
        DecodeRecordType(Item.RecordType));
  }

private:
  Twine DecodeRecordType(uint16_t recordType) {
    switch (recordType) {
    case 0:
      return Twine("Fn Entry");
    case 1:
      return Twine("Fn Exit");
    default:
      // TODO: Add Tail exit when it is added to llvm/XRay/XRayRecord.h
      return Twine("Unknown");
    }
  }

  const FuncIdConversionHelper *Converter;
};

/// The stack command will take a set of XRay traces as arguments, and collects
/// information about the stacks of instrumented functions that appear in the
/// traces. We track the following pieces of information:
///
///   - Total time: amount of time/cycles accounted for in the traces.
///   - Stack count: number of times a specific stack appears in the
///     traces. Only instrumented functions show up in stacks.
///   - Cumulative stack time: amount of time spent in a stack accumulated
///     across the invocations in the traces.
///   - Cumulative local time: amount of time spent in each instrumented
///     function showing up in a specific stack, accumulated across the traces.
///
/// Example output for the kind of data we'd like to provide looks like the
/// following:
///
///   Total time: 3.33234 s
///   Stack ID: ...
///   Stack Count: 2093
///   #     Function                  Local Time     (%)      Stack Time     (%)
///   0     main                         2.34 ms   0.07%      3.33234  s    100%
///   1     foo()                     3.30000  s  99.02%         3.33  s  99.92%
///   2     bar()                          30 ms   0.90%           30 ms   0.90%
///
/// We can also show distributions of the function call durations with
/// statistics at each level of the stack. This works by doing the following
/// algorithm:
///
///   1. When unwinding, record the duration of each unwound function associated
///   with the path up to which the unwinding stops. For example:
///
///        Step                         Duration (? means has start time)
///
///        push a <start time>           a = ?
///        push b <start time>           a = ?, a->b = ?
///        push c <start time>           a = ?, a->b = ?, a->b->c = ?
///        pop  c <end time>             a = ?, a->b = ?, emit duration(a->b->c)
///        pop  b <end time>             a = ?, emit duration(a->b)
///        push c <start time>           a = ?, a->c = ?
///        pop  c <end time>             a = ?, emit duration(a->c)
///        pop  a <end time>             emit duration(a)
///
///   2. We then account for the various stacks we've collected, and for each of
///      them will have measurements that look like the following (continuing
///      with the above simple example):
///
///        c : [<id("a->b->c"), [durations]>, <id("a->c"), [durations]>]
///        b : [<id("a->b"), [durations]>]
///        a : [<id("a"), [durations]>]
///
///      This allows us to compute, for each stack id, and each function that
///      shows up in the stack,  some important statistics like:
///
///        - median
///        - 99th percentile
///        - mean + stddev
///        - count
///
///   3. For cases where we don't have durations for some of the higher levels
///   of the stack (perhaps instrumentation wasn't activated when the stack was
///   entered), we can mark them appropriately.
///
///  Computing this data also allows us to implement lookup by call stack nodes,
///  so that we can find functions that show up in multiple stack traces and
///  show the statistical properties of that function in various contexts. We
///  can compute information similar to the following:
///
///    Function: 'c'
///    Stacks: 2 / 2
///    Stack ID: ...
///    Stack Count: ...
///    #     Function  ...
///    0     a         ...
///    1     b         ...
///    2     c         ...
///
///    Stack ID: ...
///    Stack Count: ...
///    #     Function  ...
///    0     a         ...
///    1     c         ...
///    ----------------...
///
///    Function: 'b'
///    Stacks:  1 / 2
///    Stack ID: ...
///    Stack Count: ...
///    #     Function  ...
///    0     a         ...
///    1     b         ...
///    2     c         ...
///
///
/// To do this we require a Trie data structure that will allow us to represent
/// all the call stacks of instrumented functions in an easily traversible
/// manner when we do the aggregations and lookups. For instrumented call
/// sequences like the following:
///
///   a()
///    b()
///     c()
///     d()
///    c()
///
/// We will have a representation like so:
///
///   a -> b -> c
///   |    |
///   |    +--> d
///   |
///   +--> c
///
/// We maintain a sequence of durations on the leaves and in the internal nodes
/// as we go through and process every record from the XRay trace. We also
/// maintain an index of unique functions, and provide a means of iterating
/// through all the instrumented call stacks which we know about.

struct StackDuration {
  llvm::SmallVector<int64_t, 4> TerminalDurations;
  llvm::SmallVector<int64_t, 4> IntermediateDurations;
};

StackDuration mergeStackDuration(const StackDuration &Left,
                                 const StackDuration &Right) {
  StackDuration Data{};
  Data.TerminalDurations.reserve(Left.TerminalDurations.size() +
                                 Right.TerminalDurations.size());
  Data.IntermediateDurations.reserve(Left.IntermediateDurations.size() +
                                     Right.IntermediateDurations.size());
  // Aggregate the durations.
  for (auto duration : Left.TerminalDurations)
    Data.TerminalDurations.push_back(duration);
  for (auto duration : Right.TerminalDurations)
    Data.TerminalDurations.push_back(duration);

  for (auto duration : Left.IntermediateDurations)
    Data.IntermediateDurations.push_back(duration);
  for (auto duration : Right.IntermediateDurations)
    Data.IntermediateDurations.push_back(duration);
  return Data;
}

using StackTrieNode = TrieNode<StackDuration>;

template <AggregationType AggType>
std::size_t GetValueForStack(const StackTrieNode *Node);

// When computing total time spent in a stack, we're adding the timings from
// its callees and the timings from when it was a leaf.
template <>
std::size_t
GetValueForStack<AggregationType::TOTAL_TIME>(const StackTrieNode *Node) {
  auto TopSum = std::accumulate(Node->ExtraData.TerminalDurations.begin(),
                                Node->ExtraData.TerminalDurations.end(), 0uLL);
  return std::accumulate(Node->ExtraData.IntermediateDurations.begin(),
                         Node->ExtraData.IntermediateDurations.end(), TopSum);
}

// Calculates how many times a function was invoked.
// TODO: Hook up option to produce stacks
template <>
std::size_t
GetValueForStack<AggregationType::INVOCATION_COUNT>(const StackTrieNode *Node) {
  return Node->ExtraData.TerminalDurations.size() +
         Node->ExtraData.IntermediateDurations.size();
}

// Make sure there are implementations for each enum value.
template <AggregationType T> struct DependentFalseType : std::false_type {};

template <AggregationType AggType>
std::size_t GetValueForStack(const StackTrieNode *Node) {
  static_assert(DependentFalseType<AggType>::value,
                "No implementation found for aggregation type provided.");
  return 0;
}

class StackTrie {
  // Avoid the magic number of 4 propagated through the code with an alias.
  // We use this SmallVector to track the root nodes in a call graph.
  using RootVector = SmallVector<StackTrieNode *, 4>;

  // We maintain pointers to the roots of the tries we see.
  DenseMap<uint32_t, RootVector> Roots;

  // We make sure all the nodes are accounted for in this list.
  std::forward_list<StackTrieNode> NodeStore;

  // A map of thread ids to pairs call stack trie nodes and their start times.
  DenseMap<uint32_t, SmallVector<std::pair<StackTrieNode *, uint64_t>, 8>>
      ThreadStackMap;

  StackTrieNode *createTrieNode(uint32_t ThreadId, int32_t FuncId,
                                StackTrieNode *Parent) {
    NodeStore.push_front(StackTrieNode{FuncId, Parent, {}, {{}, {}}});
    auto I = NodeStore.begin();
    auto *Node = &*I;
    if (!Parent)
      Roots[ThreadId].push_back(Node);
    return Node;
  }

  StackTrieNode *findRootNode(uint32_t ThreadId, int32_t FuncId) {
    const auto &RootsByThread = Roots[ThreadId];
    auto I = find_if(RootsByThread,
                     [&](StackTrieNode *N) { return N->FuncId == FuncId; });
    return (I == RootsByThread.end()) ? nullptr : *I;
  }

public:
  enum class AccountRecordStatus {
    OK,              // Successfully processed
    ENTRY_NOT_FOUND, // An exit record had no matching call stack entry
    UNKNOWN_RECORD_TYPE
  };

  struct AccountRecordState {
    // We keep track of whether the call stack is currently unwinding.
    bool wasLastRecordExit;

    static AccountRecordState CreateInitialState() { return {false}; }
  };

  AccountRecordStatus accountRecord(const XRayRecord &R,
                                    AccountRecordState *state) {
    auto &TS = ThreadStackMap[R.TId];
    switch (R.Type) {
    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      return AccountRecordStatus::OK;
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG: {
      state->wasLastRecordExit = false;
      // When we encounter a new function entry, we want to record the TSC for
      // that entry, and the function id. Before doing so we check the top of
      // the stack to see if there are callees that already represent this
      // function.
      if (TS.empty()) {
        auto *Root = findRootNode(R.TId, R.FuncId);
        TS.emplace_back(Root ? Root : createTrieNode(R.TId, R.FuncId, nullptr),
                        R.TSC);
        return AccountRecordStatus::OK;
      }

      auto &Top = TS.back();
      auto I = find_if(Top.first->Callees,
                       [&](StackTrieNode *N) { return N->FuncId == R.FuncId; });
      if (I == Top.first->Callees.end()) {
        // We didn't find the callee in the stack trie, so we're going to
        // add to the stack then set up the pointers properly.
        auto N = createTrieNode(R.TId, R.FuncId, Top.first);
        Top.first->Callees.emplace_back(N);

        // Top may be invalidated after this statement.
        TS.emplace_back(N, R.TSC);
      } else {
        // We found the callee in the stack trie, so we'll use that pointer
        // instead, add it to the stack associated with the TSC.
        TS.emplace_back(*I, R.TSC);
      }
      return AccountRecordStatus::OK;
    }
    case RecordTypes::EXIT:
    case RecordTypes::TAIL_EXIT: {
      bool wasLastRecordExit = state->wasLastRecordExit;
      state->wasLastRecordExit = true;
      // The exit case is more interesting, since we want to be able to deduce
      // missing exit records. To do that properly, we need to look up the stack
      // and see whether the exit record matches any of the entry records. If it
      // does match, we attempt to record the durations as we pop the stack to
      // where we see the parent.
      if (TS.empty()) {
        // Short circuit, and say we can't find it.

        return AccountRecordStatus::ENTRY_NOT_FOUND;
      }

      auto FunctionEntryMatch = find_if(
          reverse(TS), [&](const std::pair<StackTrieNode *, uint64_t> &E) {
            return E.first->FuncId == R.FuncId;
          });
      auto status = AccountRecordStatus::OK;
      if (FunctionEntryMatch == TS.rend()) {
        status = AccountRecordStatus::ENTRY_NOT_FOUND;
      } else {
        // Account for offset of 1 between reverse and forward iterators. We
        // want the forward iterator to include the function that is exited.
        ++FunctionEntryMatch;
      }
      auto I = FunctionEntryMatch.base();
      for (auto &E : make_range(I, TS.end() - 1))
        E.first->ExtraData.IntermediateDurations.push_back(
            std::max(E.second, R.TSC) - std::min(E.second, R.TSC));
      auto &Deepest = TS.back();
      if (wasLastRecordExit)
        Deepest.first->ExtraData.IntermediateDurations.push_back(
            std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
      else
        Deepest.first->ExtraData.TerminalDurations.push_back(
            std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
      TS.erase(I, TS.end());
      return status;
    }
    }
    return AccountRecordStatus::UNKNOWN_RECORD_TYPE;
  }

  bool isEmpty() const { return Roots.empty(); }

  void printStack(raw_ostream &OS, const StackTrieNode *Top,
                  FuncIdConversionHelper &FN) {
    // Traverse the pointers up to the parent, noting the sums, then print
    // in reverse order (callers at top, callees down bottom).
    SmallVector<const StackTrieNode *, 8> CurrentStack;
    for (auto *F = Top; F != nullptr; F = F->Parent)
      CurrentStack.push_back(F);
    int Level = 0;
    OS << formatv("{0,-5} {1,-60} {2,+12} {3,+16}\n", "lvl", "function",
                  "count", "sum");
    for (auto *F :
         reverse(make_range(CurrentStack.begin() + 1, CurrentStack.end()))) {
      auto Sum = std::accumulate(F->ExtraData.IntermediateDurations.begin(),
                                 F->ExtraData.IntermediateDurations.end(), 0LL);
      auto FuncId = FN.SymbolOrNumber(F->FuncId);
      OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
                    FuncId.size() > 60 ? FuncId.substr(0, 57) + "..." : FuncId,
                    F->ExtraData.IntermediateDurations.size(), Sum);
    }
    auto *Leaf = *CurrentStack.begin();
    auto LeafSum =
        std::accumulate(Leaf->ExtraData.TerminalDurations.begin(),
                        Leaf->ExtraData.TerminalDurations.end(), 0LL);
    auto LeafFuncId = FN.SymbolOrNumber(Leaf->FuncId);
    OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
                  LeafFuncId.size() > 60 ? LeafFuncId.substr(0, 57) + "..."
                                         : LeafFuncId,
                  Leaf->ExtraData.TerminalDurations.size(), LeafSum);
    OS << "\n";
  }

  /// Prints top stacks for each thread.
  void printPerThread(raw_ostream &OS, FuncIdConversionHelper &FN) {
    for (auto iter : Roots) {
      OS << "Thread " << iter.first << ":\n";
      print(OS, FN, iter.second);
      OS << "\n";
    }
  }

  /// Prints timing sums for each stack in each threads.
  template <AggregationType AggType>
  void printAllPerThread(raw_ostream &OS, FuncIdConversionHelper &FN,
                         StackOutputFormat format) {
    for (auto iter : Roots) {
      uint32_t threadId = iter.first;
      RootVector &perThreadRoots = iter.second;
      bool reportThreadId = true;
      printAll<AggType>(OS, FN, perThreadRoots, threadId, reportThreadId);
    }
  }

  /// Prints top stacks from looking at all the leaves and ignoring thread IDs.
  /// Stacks that consist of the same function IDs but were called in different
  /// thread IDs are not considered unique in this printout.
  void printIgnoringThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
    RootVector RootValues;

    // Function to pull the values out of a map iterator.
    using RootsType = decltype(Roots.begin())::value_type;
    auto MapValueFn = [](const RootsType &Value) { return Value.second; };

    for (const auto &RootNodeRange :
         make_range(map_iterator(Roots.begin(), MapValueFn),
                    map_iterator(Roots.end(), MapValueFn))) {
      for (auto *RootNode : RootNodeRange)
        RootValues.push_back(RootNode);
    }

    print(OS, FN, RootValues);
  }

  /// Creates a merged list of Tries for unique stacks that disregards their
  /// thread IDs.
  RootVector mergeAcrossThreads(std::forward_list<StackTrieNode> &NodeStore) {
    RootVector MergedByThreadRoots;
    for (auto MapIter : Roots) {
      const auto &RootNodeVector = MapIter.second;
      for (auto *Node : RootNodeVector) {
        auto MaybeFoundIter =
            find_if(MergedByThreadRoots, [Node](StackTrieNode *elem) {
              return Node->FuncId == elem->FuncId;
            });
        if (MaybeFoundIter == MergedByThreadRoots.end()) {
          MergedByThreadRoots.push_back(Node);
        } else {
          MergedByThreadRoots.push_back(mergeTrieNodes(
              **MaybeFoundIter, *Node, nullptr, NodeStore, mergeStackDuration));
          MergedByThreadRoots.erase(MaybeFoundIter);
        }
      }
    }
    return MergedByThreadRoots;
  }

  /// Print timing sums for all stacks merged by Thread ID.
  template <AggregationType AggType>
  void printAllAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN,
                                  StackOutputFormat format) {
    std::forward_list<StackTrieNode> AggregatedNodeStore;
    RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
    bool reportThreadId = false;
    printAll<AggType>(OS, FN, MergedByThreadRoots,
                      /*threadId*/ 0, reportThreadId);
  }

  /// Merges the trie by thread id before printing top stacks.
  void printAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
    std::forward_list<StackTrieNode> AggregatedNodeStore;
    RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
    print(OS, FN, MergedByThreadRoots);
  }

  // TODO: Add a format option when more than one are supported.
  template <AggregationType AggType>
  void printAll(raw_ostream &OS, FuncIdConversionHelper &FN,
                RootVector RootValues, uint32_t ThreadId, bool ReportThread) {
    SmallVector<const StackTrieNode *, 16> S;
    for (const auto *N : RootValues) {
      S.clear();
      S.push_back(N);
      while (!S.empty()) {
        auto *Top = S.pop_back_val();
        printSingleStack<AggType>(OS, FN, ReportThread, ThreadId, Top);
        for (const auto *C : Top->Callees)
          S.push_back(C);
      }
    }
  }

  /// Prints values for stacks in a format consumable for the flamegraph.pl
  /// tool. This is a line based format that lists each level in the stack
  /// hierarchy in a semicolon delimited form followed by a space and a numeric
  /// value. If breaking down by thread, the thread ID will be added as the
  /// root level of the stack.
  template <AggregationType AggType>
  void printSingleStack(raw_ostream &OS, FuncIdConversionHelper &Converter,
                        bool ReportThread, uint32_t ThreadId,
                        const StackTrieNode *Node) {
    if (ReportThread)
      OS << "thread_" << ThreadId << ";";
    SmallVector<const StackTrieNode *, 5> lineage{};
    lineage.push_back(Node);
    while (lineage.back()->Parent != nullptr)
      lineage.push_back(lineage.back()->Parent);
    while (!lineage.empty()) {
      OS << Converter.SymbolOrNumber(lineage.back()->FuncId) << ";";
      lineage.pop_back();
    }
    OS << " " << GetValueForStack<AggType>(Node) << "\n";
  }

  void print(raw_ostream &OS, FuncIdConversionHelper &FN,
             RootVector RootValues) {
    // Go through each of the roots, and traverse the call stack, producing the
    // aggregates as you go along. Remember these aggregates and stacks, and
    // show summary statistics about:
    //
    //   - Total number of unique stacks
    //   - Top 10 stacks by count
    //   - Top 10 stacks by aggregate duration
    SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11>
        TopStacksByCount;
    SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11> TopStacksBySum;
    auto greater_second =
        [](const std::pair<const StackTrieNode *, uint64_t> &A,
           const std::pair<const StackTrieNode *, uint64_t> &B) {
          return A.second > B.second;
        };
    uint64_t UniqueStacks = 0;
    for (const auto *N : RootValues) {
      SmallVector<const StackTrieNode *, 16> S;
      S.emplace_back(N);

      while (!S.empty()) {
        auto *Top = S.pop_back_val();

        // We only start printing the stack (by walking up the parent pointers)
        // when we get to a leaf function.
        if (!Top->ExtraData.TerminalDurations.empty()) {
          ++UniqueStacks;
          auto TopSum =
              std::accumulate(Top->ExtraData.TerminalDurations.begin(),
                              Top->ExtraData.TerminalDurations.end(), 0uLL);
          {
            auto E = std::make_pair(Top, TopSum);
            TopStacksBySum.insert(
                llvm::lower_bound(TopStacksBySum, E, greater_second), E);
            if (TopStacksBySum.size() == 11)
              TopStacksBySum.pop_back();
          }
          {
            auto E =
                std::make_pair(Top, Top->ExtraData.TerminalDurations.size());
            TopStacksByCount.insert(std::lower_bound(TopStacksByCount.begin(),
                                                     TopStacksByCount.end(), E,
                                                     greater_second),
                                    E);
            if (TopStacksByCount.size() == 11)
              TopStacksByCount.pop_back();
          }
        }
        for (const auto *C : Top->Callees)
          S.push_back(C);
      }
    }

    // Now print the statistics in the end.
    OS << "\n";
    OS << "Unique Stacks: " << UniqueStacks << "\n";
    OS << "Top 10 Stacks by leaf sum:\n\n";
    for (const auto &P : TopStacksBySum) {
      OS << "Sum: " << P.second << "\n";
      printStack(OS, P.first, FN);
    }
    OS << "\n";
    OS << "Top 10 Stacks by leaf count:\n\n";
    for (const auto &P : TopStacksByCount) {
      OS << "Count: " << P.second << "\n";
      printStack(OS, P.first, FN);
    }
    OS << "\n";
  }
};

std::string CreateErrorMessage(StackTrie::AccountRecordStatus Error,
                               const XRayRecord &Record,
                               const FuncIdConversionHelper &Converter) {
  switch (Error) {
  case StackTrie::AccountRecordStatus::ENTRY_NOT_FOUND:
    return formatv("Found record {0} with no matching function entry\n",
                   format_xray_record(Record, Converter));
  default:
    return formatv("Unknown error type for record {0}\n",
                   format_xray_record(Record, Converter));
  }
}

static CommandRegistration Unused(&Stack, []() -> Error {
  // Load each file provided as a command-line argument. For each one of them
  // account to a single StackTrie, and just print the whole trie for now.
  StackTrie ST;
  InstrumentationMap Map;
  if (!StacksInstrMap.empty()) {
    auto InstrumentationMapOrError = loadInstrumentationMap(StacksInstrMap);
    if (!InstrumentationMapOrError)
      return joinErrors(
          make_error<StringError>(
              Twine("Cannot open instrumentation map: ") + StacksInstrMap,
              std::make_error_code(std::errc::invalid_argument)),
          InstrumentationMapOrError.takeError());
    Map = std::move(*InstrumentationMapOrError);
  }

  if (SeparateThreadStacks && AggregateThreads)
    return make_error<StringError>(
        Twine("Can't specify options for per thread reporting and reporting "
              "that aggregates threads."),
        std::make_error_code(std::errc::invalid_argument));

  if (!DumpAllStacks && StacksOutputFormat != HUMAN)
    return make_error<StringError>(
        Twine("Can't specify a non-human format without -all-stacks."),
        std::make_error_code(std::errc::invalid_argument));

  if (DumpAllStacks && StacksOutputFormat == HUMAN)
    return make_error<StringError>(
        Twine("You must specify a non-human format when reporting with "
              "-all-stacks."),
        std::make_error_code(std::errc::invalid_argument));

  symbolize::LLVMSymbolizer Symbolizer;
  FuncIdConversionHelper FuncIdHelper(StacksInstrMap, Symbolizer,
                                      Map.getFunctionAddresses());
  // TODO: Someday, support output to files instead of just directly to
  // standard output.
  for (const auto &Filename : StackInputs) {
    auto TraceOrErr = loadTraceFile(Filename);
    if (!TraceOrErr) {
      if (!StackKeepGoing)
        return joinErrors(
            make_error<StringError>(
                Twine("Failed loading input file '") + Filename + "'",
                std::make_error_code(std::errc::invalid_argument)),
            TraceOrErr.takeError());
      logAllUnhandledErrors(TraceOrErr.takeError(), errs());
      continue;
    }
    auto &T = *TraceOrErr;
    StackTrie::AccountRecordState AccountRecordState =
        StackTrie::AccountRecordState::CreateInitialState();
    for (const auto &Record : T) {
      auto error = ST.accountRecord(Record, &AccountRecordState);
      if (error != StackTrie::AccountRecordStatus::OK) {
        if (!StackKeepGoing)
          return make_error<StringError>(
              CreateErrorMessage(error, Record, FuncIdHelper),
              make_error_code(errc::illegal_byte_sequence));
        errs() << CreateErrorMessage(error, Record, FuncIdHelper);
      }
    }
  }
  if (ST.isEmpty()) {
    return make_error<StringError>(
        "No instrumented calls were accounted in the input file.",
        make_error_code(errc::result_out_of_range));
  }

  // Report the stacks in a long form mode for another tool to analyze.
  if (DumpAllStacks) {
    if (AggregateThreads) {
      switch (RequestedAggregation) {
      case AggregationType::TOTAL_TIME:
        ST.printAllAggregatingThreads<AggregationType::TOTAL_TIME>(
            outs(), FuncIdHelper, StacksOutputFormat);
        break;
      case AggregationType::INVOCATION_COUNT:
        ST.printAllAggregatingThreads<AggregationType::INVOCATION_COUNT>(
            outs(), FuncIdHelper, StacksOutputFormat);
        break;
      }
    } else {
      switch (RequestedAggregation) {
      case AggregationType::TOTAL_TIME:
        ST.printAllPerThread<AggregationType::TOTAL_TIME>(outs(), FuncIdHelper,
                                                          StacksOutputFormat);
        break;
      case AggregationType::INVOCATION_COUNT:
        ST.printAllPerThread<AggregationType::INVOCATION_COUNT>(
            outs(), FuncIdHelper, StacksOutputFormat);
        break;
      }
    }
    return Error::success();
  }

  // We're only outputting top stacks.
  if (AggregateThreads) {
    ST.printAggregatingThreads(outs(), FuncIdHelper);
  } else if (SeparateThreadStacks) {
    ST.printPerThread(outs(), FuncIdHelper);
  } else {
    ST.printIgnoringThreads(outs(), FuncIdHelper);
  }
  return Error::success();
});