reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
/*
 * Copyright 2006-2007 Universiteit Leiden
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
 * B-3001 Leuven, Belgium
 */

#include <stdlib.h>
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_vec_private.h>
#include <isl_options_private.h>
#include "isl_basis_reduction.h"

static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
{
	int i;

	for (i = 0; i < n; ++i)
		GBR_lp_get_alpha(lp, first + i, &alpha[i]);
}

/* Compute a reduced basis for the set represented by the tableau "tab".
 * tab->basis, which must be initialized by the calling function to an affine
 * unimodular basis, is updated to reflect the reduced basis.
 * The first tab->n_zero rows of the basis (ignoring the constant row)
 * are assumed to correspond to equalities and are left untouched.
 * tab->n_zero is updated to reflect any additional equalities that
 * have been detected in the first rows of the new basis.
 * The final tab->n_unbounded rows of the basis are assumed to correspond
 * to unbounded directions and are also left untouched.
 * In particular this means that the remaining rows are assumed to
 * correspond to bounded directions.
 *
 * This function implements the algorithm described in
 * "An Implementation of the Generalized Basis Reduction Algorithm
 *  for Integer Programming" of Cook el al. to compute a reduced basis.
 * We use \epsilon = 1/4.
 *
 * If ctx->opt->gbr_only_first is set, the user is only interested
 * in the first direction.  In this case we stop the basis reduction when
 * the width in the first direction becomes smaller than 2.
 */
struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
{
	unsigned dim;
	struct isl_ctx *ctx;
	struct isl_mat *B;
	int i;
	GBR_LP *lp = NULL;
	GBR_type F_old, alpha, F_new;
	int row;
	isl_int tmp;
	struct isl_vec *b_tmp;
	GBR_type *F = NULL;
	GBR_type *alpha_buffer[2] = { NULL, NULL };
	GBR_type *alpha_saved;
	GBR_type F_saved;
	int use_saved = 0;
	isl_int mu[2];
	GBR_type mu_F[2];
	GBR_type two;
	GBR_type one;
	int empty = 0;
	int fixed = 0;
	int fixed_saved = 0;
	int mu_fixed[2];
	int n_bounded;
	int gbr_only_first;

	if (!tab)
		return NULL;

	if (tab->empty)
		return tab;

	ctx = tab->mat->ctx;
	gbr_only_first = ctx->opt->gbr_only_first;
	dim = tab->n_var;
	B = tab->basis;
	if (!B)
		return tab;

	n_bounded = dim - tab->n_unbounded;
	if (n_bounded <= tab->n_zero + 1)
		return tab;

	isl_int_init(tmp);
	isl_int_init(mu[0]);
	isl_int_init(mu[1]);

	GBR_init(alpha);
	GBR_init(F_old);
	GBR_init(F_new);
	GBR_init(F_saved);
	GBR_init(mu_F[0]);
	GBR_init(mu_F[1]);
	GBR_init(two);
	GBR_init(one);

	b_tmp = isl_vec_alloc(ctx, dim);
	if (!b_tmp)
		goto error;

	F = isl_alloc_array(ctx, GBR_type, n_bounded);
	alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
	alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
	alpha_saved = alpha_buffer[0];

	if (!F || !alpha_buffer[0] || !alpha_buffer[1])
		goto error;

	for (i = 0; i < n_bounded; ++i) {
		GBR_init(F[i]);
		GBR_init(alpha_buffer[0][i]);
		GBR_init(alpha_buffer[1][i]);
	}

	GBR_set_ui(two, 2);
	GBR_set_ui(one, 1);

	lp = GBR_lp_init(tab);
	if (!lp)
		goto error;

	i = tab->n_zero;

	GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
	ctx->stats->gbr_solved_lps++;
	if (GBR_lp_solve(lp) < 0)
		goto error;
	GBR_lp_get_obj_val(lp, &F[i]);

	if (GBR_lt(F[i], one)) {
		if (!GBR_is_zero(F[i])) {
			empty = GBR_lp_cut(lp, B->row[1+i]+1);
			if (empty)
				goto done;
			GBR_set_ui(F[i], 0);
		}
		tab->n_zero++;
	}

	do {
		if (i+1 == tab->n_zero) {
			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
			ctx->stats->gbr_solved_lps++;
			if (GBR_lp_solve(lp) < 0)
				goto error;
			GBR_lp_get_obj_val(lp, &F_new);
			fixed = GBR_lp_is_fixed(lp);
			GBR_set_ui(alpha, 0);
		} else
		if (use_saved) {
			row = GBR_lp_next_row(lp);
			GBR_set(F_new, F_saved);
			fixed = fixed_saved;
			GBR_set(alpha, alpha_saved[i]);
		} else {
			row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
			ctx->stats->gbr_solved_lps++;
			if (GBR_lp_solve(lp) < 0)
				goto error;
			GBR_lp_get_obj_val(lp, &F_new);
			fixed = GBR_lp_is_fixed(lp);

			GBR_lp_get_alpha(lp, row, &alpha);

			if (i > 0)
				save_alpha(lp, row-i, i, alpha_saved);

			if (GBR_lp_del_row(lp) < 0)
				goto error;
		}
		GBR_set(F[i+1], F_new);

		GBR_floor(mu[0], alpha);
		GBR_ceil(mu[1], alpha);

		if (isl_int_eq(mu[0], mu[1]))
			isl_int_set(tmp, mu[0]);
		else {
			int j;

			for (j = 0; j <= 1; ++j) {
				isl_int_set(tmp, mu[j]);
				isl_seq_combine(b_tmp->el,
						ctx->one, B->row[1+i+1]+1,
						tmp, B->row[1+i]+1, dim);
				GBR_lp_set_obj(lp, b_tmp->el, dim);
				ctx->stats->gbr_solved_lps++;
				if (GBR_lp_solve(lp) < 0)
					goto error;
				GBR_lp_get_obj_val(lp, &mu_F[j]);
				mu_fixed[j] = GBR_lp_is_fixed(lp);
				if (i > 0)
					save_alpha(lp, row-i, i, alpha_buffer[j]);
			}

			if (GBR_lt(mu_F[0], mu_F[1]))
				j = 0;
			else
				j = 1;

			isl_int_set(tmp, mu[j]);
			GBR_set(F_new, mu_F[j]);
			fixed = mu_fixed[j];
			alpha_saved = alpha_buffer[j];
		}
		isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
				tmp, B->row[1+i]+1, dim);

		if (i+1 == tab->n_zero && fixed) {
			if (!GBR_is_zero(F[i+1])) {
				empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
				if (empty)
					goto done;
				GBR_set_ui(F[i+1], 0);
			}
			tab->n_zero++;
		}

		GBR_set(F_old, F[i]);

		use_saved = 0;
		/* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
		GBR_set_ui(mu_F[0], 4);
		GBR_mul(mu_F[0], mu_F[0], F_new);
		GBR_set_ui(mu_F[1], 3);
		GBR_mul(mu_F[1], mu_F[1], F_old);
		if (GBR_lt(mu_F[0], mu_F[1])) {
			B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
			if (i > tab->n_zero) {
				use_saved = 1;
				GBR_set(F_saved, F_new);
				fixed_saved = fixed;
				if (GBR_lp_del_row(lp) < 0)
					goto error;
				--i;
			} else {
				GBR_set(F[tab->n_zero], F_new);
				if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
					break;

				if (fixed) {
					if (!GBR_is_zero(F[tab->n_zero])) {
						empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
						if (empty)
							goto done;
						GBR_set_ui(F[tab->n_zero], 0);
					}
					tab->n_zero++;
				}
			}
		} else {
			GBR_lp_add_row(lp, B->row[1+i]+1, dim);
			++i;
		}
	} while (i < n_bounded - 1);

	if (0) {
done:
		if (empty < 0) {
error:
			isl_mat_free(B);
			B = NULL;
		}
	}

	GBR_lp_delete(lp);

	if (alpha_buffer[1])
		for (i = 0; i < n_bounded; ++i) {
			GBR_clear(F[i]);
			GBR_clear(alpha_buffer[0][i]);
			GBR_clear(alpha_buffer[1][i]);
		}
	free(F);
	free(alpha_buffer[0]);
	free(alpha_buffer[1]);

	isl_vec_free(b_tmp);

	GBR_clear(alpha);
	GBR_clear(F_old);
	GBR_clear(F_new);
	GBR_clear(F_saved);
	GBR_clear(mu_F[0]);
	GBR_clear(mu_F[1]);
	GBR_clear(two);
	GBR_clear(one);

	isl_int_clear(tmp);
	isl_int_clear(mu[0]);
	isl_int_clear(mu[1]);

	tab->basis = B;

	return tab;
}

/* Compute an affine form of a reduced basis of the given basic
 * non-parametric set, which is assumed to be bounded and not
 * include any integer divisions.
 * The first column and the first row correspond to the constant term.
 *
 * If the input contains any equalities, we first create an initial
 * basis with the equalities first.  Otherwise, we start off with
 * the identity matrix.
 */
__isl_give isl_mat *isl_basic_set_reduced_basis(__isl_keep isl_basic_set *bset)
{
	struct isl_mat *basis;
	struct isl_tab *tab;

	if (!bset)
		return NULL;

	if (isl_basic_set_dim(bset, isl_dim_div) != 0)
		isl_die(bset->ctx, isl_error_invalid,
			"no integer division allowed", return NULL);
	if (isl_basic_set_dim(bset, isl_dim_param) != 0)
		isl_die(bset->ctx, isl_error_invalid,
			"no parameters allowed", return NULL);

	tab = isl_tab_from_basic_set(bset, 0);
	if (!tab)
		return NULL;

	if (bset->n_eq == 0)
		tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
	else {
		isl_mat *eq;
		unsigned nvar = isl_basic_set_total_dim(bset);
		eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
					1, nvar);
		eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
		tab->basis = isl_mat_lin_to_aff(tab->basis);
		tab->n_zero = bset->n_eq;
		isl_mat_free(eq);
	}
	tab = isl_tab_compute_reduced_basis(tab);
	if (!tab)
		return NULL;

	basis = isl_mat_copy(tab->basis);

	isl_tab_free(tab);

	return basis;
}